• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 23
  • 21
  • 12
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 52
  • 33
  • 27
  • 26
  • 21
  • 20
  • 16
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Geology, petrology, mineral and whole-rock chemistry, stable and radiogenic isotope systematics and Ni-Cu-PGE mineralisation of the Nebo-Babel intrusion, West Musgrave, Western Australia

Seat, Zoran January 2008 (has links)
The Nebo-Babel Ni-Cu-platinum-group element (PGE) magmatic sulphide deposit, a world-class ore body, is hosted in low-MgO, tube-like (chonolithic) gabbronorite intrusion in the West Musgrave Block, Western Australia. The Nebo-Babel deposit is the first significant discovery of a nickel sulphide deposit associated with the ca. 1078 Ma Giles Complex, which is part of the Warakurna large igneous province (LIP), now making the Musgrave Block a prime target for nickel sulphide exploration. The Musgrave Block is a Mesoproterozoic, east-west trending, orogenic belt in central Australia consisting of amphibolite and granulite facies basement gneisses with predominantly igneous protoliths. The basement lithologies have been intruded by mafic-ultramafic and felsic rocks; multiply deformed and metamorphosed between 1600 Ma and 500 Ma. The Giles Complex, which is part of the Warakurna LIP, was emplaced at ca. 1078 Ma and consists of a suite of layered mafic-ultramafic intrusions, mafic and felsic dykes and temporally associated volcanic rocks and granites. The Giles Complex intrusions are interpreted to have crystallised at crustal depths between 15km and 30km and are generally undeformed and unmetamorphosed.
152

Studies On Acid Production Potential Of Some Sulphide Minerals And Bioremediation Of Acid Mine Drainage

Chockalingam, Evvie 03 1900 (has links)
Acid mine drainage (AMD) is a worldwide environmental problem associated with the mining wastes, generated from active and inactive mining sites from mineral processing activities. AMD is defined as the drainage that occurs as a result of oxidation of sulphide minerals/wastes/tailings when exposed to air and water in the presence of chemolithotrophs namely the Acidithiobacillus sp. AMD is characterised by low pH and increased acidity due to elevated heavy metals and sulphate concentration. The acid production potential was carried out for sulphide minerals such as pyrite and chalcopyrite and copper tailings sample in the absence and presence of bacteria namely Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Acidity was generated in all the cases due to the oxidation of the mineral samples. The oxidation was found to occur at a higher rate in the presence of the bacteria compared to the control samples. Bioremediation experiments were conducted on acid mine water collected from the Ingaldahl Mines, Chitradurga, Karnataka, India, using organic and inorganic substrates. In the experiments with rice husk, complete removal of metal ions from the acid mine water was achieved with an attendant increase in the pH of the acid mine water from 2.3 to 5.5. About 21% of sulphate could be removed using Dsm. nigrificans from acid mine water pretreated with rice husk at pH 5.5 and this was further increased to 40% by the supplementation of organic components. The rice husk filtrate was found to serve as a good growth medium for Dsm. nigrificans. About 96 % of Fe, 75 % of Zn, 92 % of Cu and 41 % of sulphate removal was achieved from the acid mine water of pH 2.4 with a concomitant increase in the pH value by two units after interaction with the tree bark. About 56 % and 71 % of sulphate reduction could be achieved at initial pH values of 4.1 and 5.5 respectively of the acid mine water pretreated with E. tereticornis (Sm) bark, after inoculation with Dsm. nigrificans. The complete removal of Fe2+ and Fe3+, 80% of Zn, 83% of Cu and 62% of sulphate could be removed from acid mine water using fly ash as the substrate with an increase in pH of acid mine water from 2.3 to 7. About 68% of sulphate reduction at pH 6.8 could be achieved in acid mine water pretreated with fly ash in the presence of Dsm. nigrificans. With red mud as the substrate, complete removal of all the metal ions namely Fe2+, Fe3+, Zn, and Cu from acid mine water was achieved with a concomitant increase in the pH from 2.3 to 8. The sulphate reduction was increased to about 51% at pH 7.2 when the acid mine water pretreated with red mud was inoculated with Dsm. nigrificans. The adsorption experiments carried out on the acid mine water using either organic or inorganic substrates indicated that the free energy of adsorption was negative for all the chosen metal ions attesting to favorable interaction. The adsorption isotherms of the metal ions for rice husk exhibited Langmuirian behaviour, while those for the other substrates adhered to both Langmuir and Freundlich relationships. The adsorption process was found to be endothermic in nature for rice husk, fly ash and red mud. On the contrary, the adsorption onto tree bark showed exothermic behaviour. The adsorption kinetics of the metal ions onto the various substrates adhered to the first order Lagergren equation. The metal uptake processes by the organic and inorganic substrates chosen for this study involve ionic, chemical and physical forces of adsorption. The different types of functional groups present on the surface of the substrates such as carboxyl, hydroxyl and carbonyl, as revealed by FTIR spectroscopic studies, partake in metal binding. The metal ions will also be adsorbed by complexing with the negatively charged reaction sites on the substrate surfaces. Furthermore, the complex solution chemistry of the metals as a function of pH has also to be taken into consideration. The mechanism of sulphate reduction by Dsm. nigrificans in the presence of organic carbon can be illustrated as: 2CH2O + SO42- + 2H+  2CO2 + 2H2O + H2S M2 + H2S  MS  + 2H+ where, CH2O represents the organic matter and M represents the metal ion.
153

Rotational Spectra Of Weakly Bound H2S Complexes And 'Hydrogen Bond Radius'

Mandal, Pankaj Kanti 04 1900 (has links) (PDF)
No description available.
154

Investigation of the Geology, Structural Setting and Mineralisation the Copper-Sulphide Deposits in the Messina Area, Limpopo Mobile Belt, South Africa

Mundalamo, Humbulani Rejune 20 September 2019 (has links)
PhDENV (Geology) / Department of Mining and Environmental Geology / The study focused on the geology, structural setting and mineralisation of copper-sulphide deposits in the Musina area, located in the Central Zone of the Limpopo Mobile Belt of South Africa. The Messina copper deposits are located in the eastern part of Limpopo Province near the border with Zimbambwe. The deposits stretch from northeastern to southwestern direction for about 15 km. Previous copper mining in the area took place at Artonvilla, Messina, Harper, Campbell and Lilly copper deposits. The current study, however, focused on two main deposits, Campbell and Artonvilla. The origin, nature and mode of formation of the Cu-sulphide deposits in the Musina area have not been established with certainty. Two principal hypotheses on the origin of the Messina copper sulphide deposits have been proposed, viz; a magmatic-hydrothermal model, and meteoric waters model. Consequently, the mode of formation and mineralisation style of the Messina Cu-sulphide deposits remain contentious. Therefore, the main objective of the study was to investigate the nature and mode of formation of Cu-sulphide deposits in the Musina area. Different research methods have been applied in the current study so as to unpack the contradictory positions on the genesis of the Messina copper deposits. This included fieldwork, remote sensing data acquisition, laboratory work, and data analysis and interpretation. Fieldwork involved soil geochemical survey as well as rock and ore sampling within the study area. A total of 295 soil samples, 33 rock specimens and 21 ore samples were collected for laboratory investigation. Laboratory work consisted of a range of methods that included; geochemical analysis, petrographic and cathodoluminescence microscopy, ore mineralogy and ore microscopy, fluid inclusion geothermometry and isotope geochemistry. The work was done in different laboratories including: Mining and Environmental Geology Laboratory, Unviersity of Venda; Department of Geology Laboratory, University of Johannesburg; MINTEK Laboratory in Johannesburg; Société Générale de Surveillance Laboratory in Johannesburg, South Africa; Department of Applied Geology, Geoscience Institute, Göttingen University, Germany and Department of Geology, University of Georgia, Athens, United States of America. Remote sensing data was acquired from Southern Mapping Company, Johannesburg, South Africa. Interpretation of Remote sensing data was done at the University of Applied Sciences, Oswestfalen-Lippe, Germany. Data analysis and interpretation of laboratory results involved the use of: Desktop ArcGIS 10.4.1 for geochemical data interpretation; ENVI 5.1 and ArcGIS 10.4.1 Softwares for remote sensing data; and Triplot version 4.1.2 software for ternary plot for compositional variation of rocks. Soil geochemical survey revealed geochemical anomalies for Pb, Zn, Cu, As and Ni over the known copper deposits in the area as well as over six other areas that have not been associated with any sulphide mineralisation. Such new anomalous areas have been identified as target areas for future exploration of sulphide ore mineralisation. Petrographic studies of the rocks confirmed the host rocks to be amphibolite-quartz granulite, biotite-garnet-quartz granulite, amphibolite, quartzite, hornblende gneiss, quartzo-feldspathic gneiss, potassium-feldspathic gneiss and cal-silicate gneiss. These rocks were subjected to hydrothermal alteration during ore mineralisation within the area. It was further noted that epidote alteration was quite intensive in ore samples, while in unmineralised rock samples it was less intensive. Remote sensing data interpretation revealed spatial distribution and intensity of epidote alteration within the study area and in places coincided either with the known copper deposits or structural features, thus led to the identification of target areas for future mineral exploration in the Musina area. The current study established that the process of ore mineralisation in the Messina copper deposits took place in two distinct phases: first the formation of garnet, graphite, magnetite and hematite during regional metamorphism of the Limpopo Mobile Belt; and secondly, sulphide ore mineralisation resulting in the formation of copper ore comprising, veined, disseminated and brecciated ores. Sulphide ore mineralisation consisted mainly of pyrite, chalcopyrite, sphalerite, bornite, chalcocite and minor pyrrhotite and galena as well as traces of pentlandite, tennantite, mollybdenite, cobaltite and tetrahedrite. This confirms that the Messina copper deposits had complex sulphide ore mineralisation that is typical of hydrothermal mode of ore mineralisation from a magmatic source. The study further establishes the paragenitic sequence of ore mineralisation, comprising four stages: Stage I (Garnet- graphite – Fe oxides); stage II (Quartz- pyrite); stage III (Pyrite- sphalerite - chalcopyrite); and stage IV (Carbonates). Stage III represented the main stage of sulphide ore mineralisation in the area, while Stage IV comprising calcite, dolomite and ankarite marked the final stage of hydrothermal ore mineralisation. Paragenetic sequence identified three generations of quartz; first generation being associated with garnet, graphite, magnetite and hematite, second generation with pyrite and third generation with pyrite, sphalerite and chalcopyrite. Previous studies, however, indicated that there was only one generation of quartz that formed at the temperature between 210o to 150°C, but the current study established that the entrapment temperature of first generation quartz ranges from 315o to 200°C; second generation quartz from 235o to 135°C and third generation quartz from 240o to 115°C. At the same time, sulphur isotope investigation of chalcopyrite-pyrite pair from Campbell deposit registered a temperature of 359°C. The study therefore concluded that the temperature of ore formation within the Messina copper deposits ranged between 359°C and 115°C. The presence of halite and calcite as daughter minerals within the fluid inclusions was noted and this apparently is indicative of high salinity of fluid inclusions, which is considered as a product of direct exolution of crystalizing magma. Raman spectroscopy revealed the composition of gases in the fluid inclusions to be CH4 and N2 with 80% and 20% composition respectively, however, some inclusions were gas-poor. The presence of gases in the fluid inclusions is an indication that there was boiling at the time of entrapment. A narrow range of 34S values of -0.5 to 0.5‰ obtained in this study further confirms the magmatic source of Sulphur as Sulphur from the host rock was found to have high 𝛿34S value of 8.2‰. A genetic model for copper ore mineralisation within Musina area is proposed. The deposits are of polymetallic vein type that are genetically associated with porphyry copper deposits. According to this model, copper ore bodies were formed from hydrothermal fluids originating from magma and were epigenetic in nature. Geological structures in the area acted as conduits for hydrothermal fluids that resulted in the alteration of the host rocks and mineralisation of copper sulphide ore. Thus, the Messina coper deposits are of magmatic hydrothermal origin although the apparent location of a batholith is still unknown and the study recommends further viii research work on the location of the batholith that is presumed to have been the magmatic source. The study further recommend dating of later rocks as well as orebody s it is essential for understanding the process of ore formation in this area. For further exploration, areas that have undergone “moderate” to “high” degree of epidote alteration and lie in close proximity to geological structures such as faults and thrust folds that could have acted as conduits for hydrothermal fluids and resulted in sulphide ore mineralisation and registered high geochemical anomalies for Pb, Zn, As and Ni should be targeted. In support of further mineral exploration within the study area, the study recommend a detailed geostatistical application for the purpose of delineating homogeneous areas based on the combination of lineaments, interpolated soil geochemical maps and thematic maps. / NRF
155

Measurement of surface tension in base metal sulphide mattes by an improved sessile drop method

Hamuyuni, Joseph 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: See item for full text / AFRIKAANSE OPSOMMING: Sien item vir volteks
156

Kemisk stabilisering av gruvavfall från Ljusnarsbergsfältet med mesakalk och avloppsslam / Chemical stabilization of mine waste with sewage sludge and calcium carbonate residues

Höckert, Linda January 2007 (has links)
<p>Mine waste from Ljusnarsbergsfältet in Kopparberg, Sweden, is considered to constitute a great risk for human health and the surrounding environment. Some of the waste rock consists of sulphide minerals. When sulphide minerals come into contact with dissolved oxygen and precipitation, oxidation may occur resulting in acid mine drainage (AMD) and the release of heavy metals. The purpose of this study has been to characterise the waste material and try to chemically stabilize the waste rock with a mixture of sewage sludge and calcium carbonate. The drawback of using organic matter is the risk that dissolved organic matter can act as a complexing agent for heavy metals and in this way increase their mobility. An additional study to examine this risk has therefore also been performed.</p><p>The project started with a pilot study in order to identify the material fraction that was suitable for the experiment. When suitable material had been chosen, a column test was carried out for the purpose of studying the slurry’s influence on the mobility of metals along with the production of acidity. To clarify the organic material’s potential for complexation a pH-stat batch test was used. Drainage water samples, from the columns, were regularly taken during the experiment. These samples were analysed for pH, electrical conductivity, alkalinity, redox potential, dissolved organic carbon (DOC), sulphate and leaching metals. The effluent from the pH-stat-test were only analysed on a few occasions and only for metal content and change in DOC concentration.</p><p>The results from the laboratory experiments showed that the waste rock from Ljusnarsberg easily leached large amounts of metals. The stabilization of the waste rock succeeded in maintaining a near neutral pH in the rock waste leachate, compared to a pH 3 leachate from untreated rock waste The average concentration of copper and zinc in the leachate from untreated waste rock exceeded 100 and 1000 mg/l respectively, while these metals were detected at concentrations around 0.1 and 1 mg/l, respectively, in the leachate from the treated wastes. Examined metals had concentrations between 40 to 4000 times lower in the leachate from treated waste rock, which implies that the stabilisation with reactive amendments succeeded. The long term effects are, however, not determined. The added sludge contributed to immobilise metals at neutral pH despite a small increase in DOC concentration. The problem with adding sludge is that if pH decreases with time there is a risk of increased metal leaching.</p> / <p>Gruvavfallet från Ljusnarsbergsfältet i Kopparberg anses utgöra en stor risk för människors hälsa och den omgivande miljön. En del av varpmaterialet, ofyndigt berg som blir över vid malmbrytning, utgörs av sulfidhaltigt mineral. Då varpen exponeras för luft och nederbörd sker en oxidation av sulfiderna, vilket kan ge upphov till surt lakvatten och läckage av tungmetaller. Syftet med arbetet har varit att karaktärisera varpen och försöka stabilisera den med en blandning bestående av mesakalk och avloppsslam, samt att undersöka risken med det lösta organiska materialets förmåga att komplexbinda metaller och på så vis öka deras rörlighet.</p><p>Efter insamling av varpmaterial utfördes först en förstudie för att avgöra vilken fraktion av varpen som var lämplig för försöket. När lämpligt material valts ut utfördes kolonntest för att studera slam/kalk-blandningens inverkan på lakning av metaller, samt pH-statiskt skaktest för att bedöma komplexbildningspotentialen hos det organiska materialet vid olika pH värden. Från kolonnerna togs lakvattenprover kontinuerligt ut under försökets gång för analys med avseende på pH, konduktivitet, alkalinitet, redoxpotential, löst organiskt kol (DOC), sulfat och utlakade metaller. Lakvattnet från pH-stat-testet provtogs vid ett fåtal tillfällen och analyserades endast med avseende på metallhalter och förändring i DOC-halt.</p><p>Resultatet från den laborativa studien visade att varpmaterialet från Ljusnarsberg lätt lakades på stora mängder metaller. Den reaktiva tillsatsen lyckades uppbringa ett neutralt pH i lakvattnet från avfallet, vilket kan jämföras med lakvattnet från den obehandlade kolonnen som låg på ett pH kring 3. Medelhalten av koppar och zink översteg under försöksperioden 100 respektive 1000 mg/l i lakvattnet från det obehandlade avfallet, medan halterna i det behandlade materialets lakvatten låg kring 0,1 respektive 1 mg/l. Av de studerade metallerna låg halterna 40-4000 gånger lägre i lakvattnet från den behandlade kolonnen, vilket innebär att slam/kalk-blandningen har haft verkan. Stabiliseringens långtidseffekt är dock okänd. Det tillsatta slammet resulterade inte i någon större ökning av DOC-halten i det pH-intervall som åstadkoms med mesakalken. Utifrån pH-stat-försöket kunde det konstateras att det tillsatta slammet bidrog till metallernas immobilisering vid neutralt pH, trots en liten ökning av DOC-halten. Om en sänkning av pH skulle ske med tidens gång föreligger dock risk för ökat metalläckage.</p>
157

Biodessulfatação com posterior oxidação parcial do sulfeto em reatores operados em bateladas seqüenciais / Biological sulphate removal with partial oxidation of sulfide in sequencial batch reactors

Silva, Ariovaldo José da 18 February 2005 (has links)
Em reatores biológicos anaeróbios adequadamente projetados, 'SO IND.4'POT.2-' pode ser reduzido a sulfeto pelas bactérias redutoras de sulfato (BRS), o qual, posteriormente, pode ser oxidado a enxofre elementar, em presença de baixas concentrações de oxigênio dissolvido ('< OU =' 0,1 mg/L). Na presente tese, o processo de biodessulfatação foi estudado em reatores anaeróbios operados em bateladas seqüenciais, com biomassa imobilizada em espuma de poliuretano (PU) e em carvão vegetal (CV), previamente selecionados por testes de adesão microbiana em reatores diferenciais. Posteriormente, avaliou-se o efeito de etanol sobre o desempenho do processo de biodessulfatação. As principais rotas de utilização de substratos orgânicos pelos microrganismos foram identificadas por meio de modelação cinética. A comunidade microbiana foi avaliada por hibridação in situ com fluorescência (FISH). Após o processo de biodessulfatação, avaliou-se o processo de oxidação parcial do sulfeto, em reator aeróbio operado em bateladas seqüenciais, com biomassa imobilizada em PU. Concluiu-se por FISH que as características intrínsecas dos materiais suportes influenciam o equilíbrio microbiano. A relação DQO/['SO IND.4'POT.2-'] igual a 1,3 representou a melhor condição para o processo de biodessulfatação, com PU e com CV como materiais suporte, com eficiência média em redução de sulfato igual a 96%. A adição de etanol melhorou o processo de redução de sulfato. Sulfeto gerado no processo de biodessulfatação foi oxidado parcialmente a enxofre elementar, com eficiência de remoção de 80% no reator aeróbio / In anaerobic biological systems for wastewater treatment well-designed sulphate can be reduced to sulfide by sulphate-reducing bacteria (SRB), and it can be subsequently oxidized to elemental sulphur, under low dissolved oxygen concentration ('< OU =' 0.1 mg/L). The present thesis evaluates the microbial sulphate reduction process in anaerobic sequencing batch biofilm reactors with immobilized biomass in polyurethane foam (PU) and vegetable coal (CV). Such support materials were previously selected by microbial adhesion tests executed in differential reactors. Afterwards, the effect of ethanol addition on the performance of sulphate reduction process was assessed. The main metabolic pathways of organic substrate utilization by microorganisms were identified by kinectic modelation. The microbial community was evaluated by fluorescence in situ hybridization (FISH). The partial sulfide oxidation process was also evaluated in aerobic sequencing batch reactor containing biomass immobilized in PU matrices. It was concluded by FISH that characteristics of the support materials has influence on the microbial equilibrium. The COD/['SO IND.4'POT.2-'] ratio equal to 1.3 provided the best condition for microbial sulphate reduction process in both reactors with mean efficience of 96%. The ethanol addition improved the sulphate reducing process. The sulfide generated was partialy oxidized to elemental sulphur in the aerobic reactor with removal efficience of 80%
158

Avaliação dos efeitos da adição de L-cistina e sais biliares na técnica de H2S na detecção de contaminação fecal em ambientes aquáticos. / Effect evaluation of L-cystine and bile salts in H2S method for fecal contamination detection in water environment.

Silva, Thiago Nepomuceno 13 June 2016 (has links)
As fontes hídricas disponíveis para o consumo humano vêm sendo comprometidas. Para resolver este problema, várias técnicas de detecção de contaminação fecal foram desenvolvidas. Em 1982, Manja e colegas desenvolveram método H2S que é simples, rápida e de baixo custo e detecta bactérias produtoras de H2S e, assim, a contaminação fecal. Neste trabalho foi analisada a eficácia de detecção de micro-organismos produtores de H2S frente a adição de L-cistina (125mg/L e 250mg/L) e desoxicolato de sódio (DS) (0,1% e 0,3%) e na presença de bactérias não produtoras de H2S para verificar se a presença destas bactérias interferem na detecção dos isolados H2S+. Assim, comparou-se o teste H2S com a membrana filtrante e o Colilert®. Os resultados deste estudo indicam que o meio H2S com adição de 0,3% de desoxicolato de sódio se mostrou mais rápido e sensível. Quando comparado com outras metodologias clássicas, o meio com 0,3% apresentou uma ligeira queda na sensibilidade mas o método H2S se mostrou mais sensível que o Colilert. / Water supply for human consumption have been compromised. Several detection methods for fecal contamination have been developed to solve this problem. Manja and co-workers (1982) developed a simple, fast and low-cost method for fecal contamination based on detection of sulfate-reducing bacteria, the H2S method. This work aimed to analyse the detection efficiency of the H2S method under different conditions: with L-cystine (125mg/L e 250mg/L) and sodium deoxycholate (0.1% e 0.3%). Also, non-sulfate-reducing bacteria interference were evaluated. Comparison tests were made through membrane filtration and Colilert®. Our results indicate a faster and more sensible for the 0.3% sodium deoxycholate condition. Compared to other classic methodologies, the 0.3% sodium deoxycholate condition slightly decrease the sensibility. However the H2S method was more sensitive than the Colilert one.
159

Electrical and seismic responses of shallow, volcanogenic, massive sulphide ore deposits

Whiteley, Robert, School of Mines, UNSW January 1986 (has links)
SP, resistivity/IP and seismic refraction responses of the Woodlawn Orebody and Mt.Bulga Deposit are examined and compared. Both exhibit similar responses produced mainly by uneconomic and disseminated sulphide mineralization and host rock features, demonstrating that the magnitude and character of electrical and seismic responses are not reliable indicators of size and economic sulphide content of volcanogenic sulphide ores. SP, soil geochemistry and electrogeochemistry are found to be the most effective exploration methods followed by resistivity/IP and seismic refraction. The large SP responses over both ore zones are simulated using new methods which allowed the width and depth of oxidation to be computed. Conventional and compensation array resistivity responses best define the deposits. Computer simulation shows that dipole- dipole and Unipole arrays are most useful. First order IP responses are large and similar, but the ore zones are not easily distinguished from polarizable host rocks. Second order responses, at Woodlawn, better define these lithologies and cross-plots of EM coupling removed first order parameters prove useful. The supergene and gossan zones are defined as sources of electrical anomalies and correlate with interpreted SP sources. Seismic velocities of fresh Woodlawn ore samples indicate only small contrasts with host rocks. Refraction travel-time data are highly complex but host rocks are clearly distinguished by their seismic velocities. Both deposits appear as low velocity zones at the general bedrock level which are shallower and narrower than the electrical sources associated with the ore zones. Extensive model simulation shows that the Reciprocal interpretation method is most useful when compared to other time- term methods for refraction interpretation but has some limitations. Computer simulation shows the significance of non- critical refractions, diffractions and laterally hidden zones which define the lateral resolution of the refraction method. The results of this study and the interpretative techniques developed will assist the exploration for similar and deeper massive volcanogenic orebodies in comparable geological environments.
160

Volatile sulfur compounds in coastal acid sulfate soils, northern N.S.W.

Kinsela, Andrew Stephen, School of Biological, Earth & Environmental Sciences, UNSW January 2007 (has links)
The cycling of biogenic volatile sulfur compounds (VSCs) within marine and terrestrial ecosystems has been shown to play an integral role in atmospheric chemistry; by influencing global climate change through the creation of cloud condensation nuclei and controlling acid-base chemistry; as well as influencing sediment chemistry including the interactions with trace metals, particularly regarding iron sulfide formation. Despite this, the examination of VSCs within Australian coastal acid sulfate soils (ASS) is an unexplored area of research. As ASS in Australia occupy an area in excess of 9 M ha, there is a clear need for a greater understanding of the cycling of these compounds within such systems. This thesis looks at the concentrations of several VSCs within agricultural and undisturbed ASS on the east coast of Australia. Initial measurements of sulfur dioxide (SO2) were made using passive diffusion samplers, which were followed by two detailed field-based studies looking at the concentrations and fluxes of both SO2 and hydrogen sulfide (H2S) using flux-gradient micrometeorological techniques. These novel results indicated that this agricultural ASS was a substantial source of atmospheric H2S (0.036-0.056 gSm-2yr-1), and SO2 (0.095-0.31 gSm-2yr-1), with flux values equating to many other salt- and freshwater marshes and swamps. The flux data also suggested that the ASS could be a continual source of H2S which is photo-oxidised during the daytime to SO2. Measurements of both compounds showed separate, inverse correlations to temperature and moisture meteorological parameters indicating possible contributing and / or causal release factors. Further identification of these and other VSCs within ASS samplers was undertaken in the laboratory using gas chromatography in combination with solid-phase microextraction. Although SO2 and H2S were not discovered within the headspace samples, two other VSCs important in atmospheric sulfur cycling and trace metal geochemistry were quantified; dimethylsulfide (DMS; &gt 300??g/L) and ethanethiol (ESH &gt 4??g/L). The measurements of H2S, DMS and ESH are the first quantifications with Australian ASS, and they may be important for refining regional or local atmospheric sulfur budgets, as well as interpreting previous SO2 emissions from ASS. Ultimately this thesis further enhances our understanding of the cycling of VSCs within acid sulfate systems.

Page generated in 0.0527 seconds