• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 30
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification and characterization of novel autoregulatory mechanism controlling ataxia telangiectasia mutated gene expression, protein trafficking and function

Khalil, Hilal Shahid January 2012 (has links)
Ataxia-telangiectasia mutated gene product (ATM) is a 350 kDa Serine/Threonine kinase belonging to the family of Phosphatidylinositol-3 kinase like kinases. ATM functions as a key element in DNA Damage Response (DDR), a mechanism that maintains genomic integrity within the cells. ATM is activated after double stranded DNA damage and initiates signalling cascades that determine the process of decision-making of cell fate and involves the participation of multiple proteins. This vital protein acts first by sensing double stranded DNA breaks and second by transducing the signal and activating other downstream proteins of the repair pathway via its kinase function. This provides an important link between signals generated after DNA damage, the cell cycle pathway and apoptotic machinery. This function is crucial for mammalian cells which are constantly challenged by genotoxic agents from a variety of sources and therefore require a robust sensing and repair mechanism to maintain cell vitality. Cells lacking ATM are hypersensitive to cytotoxic insults, particularly genotoxic stress, induced through radiation or radiomimetic drugs. This thesis describes the discovery and characterisation of novel autoregulatory feedback loops of ATM kinase in human cells. Firstly, I have discovered that inhibition of ATM kinase activity causes induction of ATM protein expression followed by time dependent oscillations. This novel autoregulatory mechanism was demonstrated in cell cycle independent manner and both in the absence and presence of DNA damage. ATM promoter assay revealed that this autoregulation was governed at the transcriptional level. Furthermore, this autoregulatory induction of ATM was also accompanied by a transient upregulation of P53, pATR and E2F1 levels. Elucidation of the underlying trafficking mechanism of ATM during such autoregulation and in DDR also revealed a novel ATM sub-cellular trafficking mechanism which was dependent on its own kinase activity. This trafficking mechanism involved DNA damage induced Golgi to nuclear transport of phosphorylated ATM S-1981 to elicit DDR. This was found to be a conserved pathway required during the initiation of DDR and was demonstrated in multiple cell lines. Further studies into the sub-cellular transport machinery revealed the involvement of β-COPI coatomer protein in this mechanism of ATM trafficking, which was found to be autoregulated by ATM kinase, and required 387-388 ATM di-Lysine motif. The discovery of these functionally important autoregulatory mechanisms of ATM were further utilised to develop Luciferase reporter based biosensor of DNA damage and single cell fluorescence based ATM inhibition assay to screen for ATM inhibitors. Finally, following the discovery and characterisation of these functional spatio-temporal autoregulations of ATM, quantitative estimations of the kinetics of signalling cascades initiated by it during DDR and its overall outcome on cellular fate were determined to study ATM pathway systematically for employing a quantitative systems biology approach. These novel findings have immensely increased our understanding of ATM regulation and function. Elucidation of the mechanisms of novel autoregulations of ATM provide new dimensions through which DDR pathway could be manipulated, and as such could be utilised for achieving targeted cellular sensitivity in therapeutic intervention of cancer.
12

ATM activation by oxidative stress

Guo, Zhi, 1978- 24 January 2011 (has links)
The Ataxia-telangiectasia mutated (ATM) protein is regarded as the major regulator of the cellular response to DNA double Strand Breaks (DSBs). In response to DSBs, ATM dimers dissociates into active monomers in a process promoted by Mre11-Rad50-Nbs1 (MRN) complex. ATM-deficient cells exhibit signs of chronic oxidative stress, suggesting that ATM plays an important role in the regulation of reactive oxygen species (ROS). I show for the first time that ATM can be activated by oxidative stress directly in the form of exposure to H₂O₂. In vitro kinase assays with purified ATM suggest that the activation by H₂O₂ is independent of DSBs and the MRN complex. In 293T cells, H₂O₂ induces ATM autophosphorylation on serine 1981. p53 and Chk2 are also phosphorylated by ATM after H₂O₂ treatment but not histone H2AX and heterochromatin protein Kap1, indicating that ATM activation by H₂O₂ in human cells is independent of DNA damage. I also show that the cysteine residue 2991 is critical for ATM activation by H₂O₂ in vitro. / text
13

Functional analysis of ATM with relevance for primary immunodeficiency and tumor formation /

Lähdesmäki, Aleksi, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2004. / Härtill 5 uppsatser + appendix.
14

Concentrações de vitaminas C e E em pacientes com ataxia telangiectasia: relação com biomarcadores associados a aterosclerose e ao estresse oxidativo. / Concentrations of vitamins C and E in patients with ataxia telangiectasia: relationship to biomarkers associated whit atherosclerosis and oxidative stress

Andrade, Itana Gomes Alves [UNIFESP] January 2013 (has links) (PDF)
Made available in DSpace on 2015-12-06T23:46:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2013 / Introdução: A ataxia telangiectasia (AT) e uma doenca neurodegenerativa, que cursa com imunodefiCiência em graus variaveis, disfuncao mitocondrial e exacerbacao do estresse oxidativo. Objetivo: avaliar o estado nutricional, perfil lipidico, peroxidacao lipidica e as concentracoes plasmaticas de vitaminas C e E e relaciona-las com biomarcadores associados ao risco de aterosclerose de pacientes com AT e controles. Metodos: Estudo transversal controlado envolvendo 13 pacientes e 22 controles saudaveis, pareados por genero e idade. Foram avaliados: estado nutricional, consumo alimentar, perfil lipidico e suas relacoes, concentracoes plasmaticas de vitaminas C e E, malondialdeido (MDA) e proteina C reativa ultrassensivel (PCRus). Resultados: A media de idade do grupo AT foi 14,6 anos; 4/13 (30,8%) eram desnutridos e 3/13 (23,1%) apresentavam baixa estatura para idade. Os pacientes apresentaram maior comprometimento de massa magra comparativamente aos controles. As concentracoes de triglicerides, colesterol total e de LDL-c foram significantemente mais elevadas nos pacientes e as de HDL-c, mais baixas. As relacoes associadas ao risco de aterosclerose (CT/HDL-c, LDL-c/HDL-c e Log TG/HDL-c) e o colesterol nao HDL (NHDL-c) foram significantemente superiores no grupo de pacientes em comparacao aos controles. Nao houve diferenca para as concentracoes de malondialdeido, proteina C reativa e de vitaminas C e E entre os dois grupos. As relacoes vitamina E/lipideos totais e vitamina E/triglicerides mostraram valores mais baixos no grupo de pacientes; correlacao significante e inversa entre estas relacoes e NHDL-c, CT/HDL-c, LDL-c/HDL-c e Log TG/HDL-c foi observada no grupo de pacientes. A alanina aminotransferase (ALT) correlacionou-se de forma direta e significante com NHDL-c, CT/HDL-c e LDL-c/HDL-c, no grupo de pacientes. A inGestão dietetica de energia, macronutrientes e de vitaminas C e E nao diferiu entre os grupos. Conclusao: O elevado risco aterosclerotico de pacientes com AT aliado ao comprometimento da defesa antioxidante e do estado nutricional pode complicar a evolucao da doenca e enfatiza a importancia da atencao multiprofissional com monitoramento de biomarcadores e orientacao nutricional apropriada / Introduction: Ataxia telangiectasia (AT) is a neurodegenerative disease that leads to immunodeficiency in varying degrees, mitochondrial dysfunction and oxidative stress. Objective: To evaluate the nutritional status, lipid profile, lipid peroxidation, and plasma concentrations of vitamins C and E and relate them with biomarkers associated with risk of atherosclerosis in patients with AT and controls. Methods: Cross sectional and controlled study involving 13 patients and 22 controls healthy, matched by gender and age. We evaluated: nutritional status, food intake, lipid profile and their relationships, plasma concentrations of vitamins C and E, malondialdehyde (MDA) and high-sensitivity C-reactive protein (hs CRP). Results: The mean age of the AT group was 14.6 years, 4/13 (30.8%) were malnourished and 3/13 (23.1%) had stunting. The patients showed greater impairment of lean body mass compared to controls. The concentrations of triglycerides, total cholesterol and LDL-c were significantly higher in patients and of HDL-c,lower. The ratios associated with the risk of atherosclerosis (TC/ HDL-c, and LDL-c/HDL-c Log TG / HDL-c) and non-HDL cholesterol (NHDL-c) were significantly higher in patients compared to controls. There was no difference in concentrations of malondialdehyde, C-reactive protein and vitamins C and E between the two groups. The ratios vitamin E / total lipids and vitamin E / triglycerides showed lower values in the group of patients; significant inverse between these ratiosand NHDL-c, TC/ HDL-c, and LDL-c/HDL-c Log TG / HDL -c was observed in the AT group. Alanine aminotransferase (ALT) correlated directly and significantly with NHDL-C, TC / HDL-c and LDL-c/HDL-c, in patients. Dietary intake of energy, macronutrients and vitamins C and E did not differ between groups. Conclusion: The high atherosclerotic risk of patients with AT coupled with impaired antioxidant defense and nutritional status may complicate the clinical course of the disease and emphasizes the importance of multidisciplinary care with monitoring of appropriate biomarkers and nutrition al guidance. / BV UNIFESP: Teses e dissertações
15

An investigation of the importance of the ATM protein in the endothelium and its role in the signalling pathways of NO production

Collop, Natalie Chantel 04 1900 (has links)
Thesis (MScMedSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Ataxia telangiectasia (AT) is a well-characterized neurodegenerative disease resulting from a genetic defect in the Atm gene causing an absence or very low expression of the ATM protein. As AT patients are prone to the development of insulin resistance and atherosclerosis, the aim or the current study was to investigate the importance of the ATM protein in the endothelium and its role in the signalling pathways of nitric oxide (NO) production. To accomplish this, the first objective was to establish an in-house endothelial cell isolation technique harvested from normal and insulin resistant animals. Unfortunately, these cultures, although staining positive with an endothelial cell specific stain, were not pure enough and did not express endothelial NO synthase (eNOS), the central enzyme in NO production. The remainder of the study utilized commercial aortic endothelial cells (AECs) and found that there was a significant increase in NO production when the ATM protein was inhibited by the specific inhibitor, Ku-60019. The beneficial impact of increased NO production includes maintaining vascular homeostasis, promoting angiogenesis, initiating DNA repair by activating p53 and inhibiting smooth muscle cell proliferation. On the other hand, reactive oxygen species (ROS) and reactive nitrogen species (RNS) also generated by high levels of NO, can exert both protective and harmful effects. Examples of these include cell death due to high concentrations of ROS. However, Ku-60019 did not result in increased cell death of AECs. We demonstrated for the first time, a relationship between endothelial ATM protein kinase and the generation of NO. The signalling pathways involved in NO production and glucose utilization form a network of interrelationships. Central to both pathways is the activity of two protein kinases, PKB/Akt and AMPK. Both these kinases are known to phosphorylate the eNOS enzyme to produce NO on the one hand and AS160 to induce GLUT 4 translocation and glucose uptake on the other hand. Activation of the ATM protein is postulated to be a prerequisite for PKB/Akt activation and it may also result in activation of AMPK. However, using insulin to stimulate ATM, we could not show that inhibition of ATM in endothelial cells affected expression or insulin-stimulated activation of PKB/Akt while the PI3-K inhibitor wortmannin, inhibited the latter. In addition, inhibition of ATM negatively regulated the phospho/total ratio of AMPK. We therefore postulate that the NO production elicited by inhibition of ATM, may not be as result of eNOS activity. A second important observation was that inhibition of ATM significantly enhanced phosphorylation of the p85 regulatory subunit of PI3-K. This would imply that ATM normally has an inhibitory effect on p85 phosphorylation and therefore PI3-K activation. We base this assumption on previous publications showing that Ku-60019 does not inhibit PI3K. This again indicates that ATM has a hitherto unexplored regulatory role in endothelial function. / AFRIKAANSE OPSOMMING: Ataxia telangiectasia (AT) is a goed-gekarakteriseerde neurodegeneratiewe siekte a.g.v. ‘n genetiese afwyking in the Atm geen wat lei tot ‘n afwesige of lae uitdrukking van die ATM proteïen. Aangesien AT pasiënte geneig is om insulienweerstandigheid en aterosklerose te ontwikkel, was die doel van hierdie studie om die belang van die ATM proteïen in die endoteel, en sy rol in die seintransduksiepaaie betrokke by stikstofoksied (NO) produksie, te ondersoek. Om dit te bereik, was die eerste mikpunt om ‘n eie endoteelsel isolasie-tegniek (ge-oes van normale en insulienweerstandige diere) te vestig. Ongelukkig was hierdie selkulture nie suiwer genoeg nie.Ten spyte daarvan dat hulle positief getoets het met ‘n endoteelsel-spesifieke kleurstof kon geen uitdrukking van eNOS, die sentrale ensiem verantwoordelik vir NO produksie, waargeneem word nie. Die res van die studie het van kommersiële aorta endoteelselle (AES) gebruik gemaak, en daar is gevind dat die inhibisie van die ATM proteïen met die spesifieke inhibitor, Ku-60019, tot ‘n beduidende toename in NO produksie gelei het. Die voordelige impak van verhoogde NO produksie sluit die handhawing van vaskulêre homeostase, bevordering van angiogenese, inisiëring van DNA herstel deur p53 aktivering en inhibisie van gladdespiersel proliferasie in. Reaktiewe suurstofspesies (ROS) en reaktiewe stikstofspesies (RNS) wat ook a.g.v.verhoogde NO gegenereer word, kan egter beide beskermende sowel as skadelike effekte uitoefen. Voorbeelde sluit seldood a.g.v. hoë ROS konsentrasies in. Ku-60019 het egter nie tot ‘n toename in seldood van die AES gelei nie. Hierdie studie het vir die eerste keer aangetoon dat daar ‘n verwantskap tussen die endoteel ATM proteïen kinase en die produksie van NO bestaan. Die seintransduksie paaie betrokke by NO produksie en glukose verbruik vorm ‘n interafhanklike netwerk. Die aktiwiteit van twee proteïen kinases, PKB/Akt en AMPK, is sentrale rolspelers in beide paaie. Albei hierdie kinases is daarvoor bekend dat hulle die eNOS ensiem fosforileer om NO te produseer, maar terselfdertyd ook lei tot AS160 fosforilering, wat tot GLUT 4 translokering en glukose opname lei. Dis is voorgestel dat aktivering van die ATM proteïen ‘n voorvereiste vir PKB/Akt aktivering mag wees en verder kan dit ook tot aktivering van AMPK lei. Ons kon nie aantoon dat inhibisie van ATM in endoteelselle die uitdrukking of insulien-geïnduseerde aktivering van PKB/Akt onderdruk nie, terwyl die PI3-K inhibitor, wortmannin, wel laasgenoemde geïnhibeer het. Verder het die inhibisie van ATM die fosfo/totale AMPK verhouding negatief gereguleer. Ons postuleer dus dat die NO produksie waargeneem tydens ATM inhibisie, moontlik nie die gevolg van eNOS aktiwiteit was nie. ‘n Tweede belangrike waarneming was dat die inhibisie van ATM die fosforilering van die p85 regulatoriese subeenheid van PI3-K beduidend laat toeneem het. Dit impliseer dat ATM normaalweg ‘n inhibitoriese effek op p85 fosforilering, en dus PI3-K aktivering, het. Hierdie aanname word gemaak n.a.v. vorige publikasies wat getoon het dat Ku-60019 nie PI3-K inhibeer nie. Dit dui weer eens daarop dat ATM ‘n tot nog toe onbekende regulatoriese rol in endoteelfunksie het.
16

Novel Roles of Ataxia Telangiectasia Mutated (ATM) in DNA Repair and Tumor Suppression

Yamamoto, Kenta January 2015 (has links)
Mammalian cells possess a variety of different DNA repair pathways, which work together to safeguard genomic integrity upon encountering different types of DNA damage. Among all lesions, DNA double-strand breaks (DSBs) are most toxic and, if left unrepaired, results in loss of genetic information and genomic instability- a hallmark of tumorigenesis. Ataxia Telangiectasia Mutated (ATM) is a protein kinase, a master regulator of the DNA damage response, and is activated upon the formation of DSBs. ATM senses DNA DSBs through its accessory proteins and functions as a transducer of the DNA damage response (DDR), which entails the activation of genes involved in DNA repair, cell cycle checkpoint, and apoptosis. Consequently, loss of ATM results in increased genomic instability and compromised checkpoint regulation. Moreover, loss of ATM has been reported in various human cancers, and Atm-deficient mice uniformly develop thymic lymphomas, highlighting its role as a tumor suppressor. Although ATM has been extensively studied, much of its known functions to date pertained to its kinase activity, and the structural function of ATM remains elusive. To investigate whether ATM possesses structural functions beyond its kinase activity, we generated a mouse model expressing kinase-dead (KD) ATM protein. Intriguingly, while Atm-/- are viable, AtmKD/KD and AtmKD/- mice were embryonic lethal and AtmKD/KD and AtmKD/- cells displayed greater genomic instability compared to ATM-null cells, suggesting that the presence of the ATM KD protein blocks additional DNA repair pathways that are not affected in ATM-null cells. In this context, we identified defects in homologous recombination, resolution of Camptothecin (CPT)-induced Topoisomerase-I lesions, and replication progression specifically in AtmKD/- cells beyond those observed in Atm-/-. Mouse model expressing KD ATM (AtmKD/-) in hematopoietic stem cells (HSCs) developed thymic lymphomas faster and more frequently than the corresponding model with the ATM-null HSCs, which was associated with increased genomic instability and loss of tumor-suppressor Pten. In collaboration with others, we showed that the majority of tumor-associated ATM mutations reported in TCGA are missense mutations and are highly enriched in the kinase domain, while Ataxia-Telangiectasia (A-T) associated germline ATM mutations are almost always truncating mutations leading to complete loss of ATM protein. This result suggests that ATM KD protein might be expressed in a significant fraction of human cancer. These results, for the first time, identified a previously unknown phosphorylation-dependent, structural function of ATM in the maintenance of genomic integrity and tumor suppression. Furthermore, the tumorigenicity and vulnerability to particular DNA damaging agents caused by the expression of the ATM KD protein relative to the loss of ATM highlight the importance of distinguishing the types of ATM mutations in tumors, and provide novel insights into the clinical use of specific ATM kinase inhibitors, as well as the prognosis and treatments of ATM-mutated cancers. ATM has been reported to be frequently inactivated in human B-cell lymphomas, including up to 50% Mantle Cell Lymphoma (MCL), which represents around 6% of all Non-Hodgkins Lymphomas (NHLs). MCL is characterized by the recurrent t(11;14)(q13;q32) translocation, which juxtaposes CCND1/BCL-1 to the IGH enhancer, leading to deregulated expression of CyclinD1 (CCND1). However, CyclinD1 overexpression in B cells alone is not sufficient to induce MCL in mouse models, and the role of ATM in the suppression of B-cell lymphomas is not well understood, in part due to the lack of ATM-deficient mature B-cell lymphoma models. To address this, we generated a mouse model that combines conditional deletion of ATM specifically in early progenitor B-cells via Mb1cre, and overexpressing CyclinD1 in lymphoid cells via EµCyclinD1 transgene. While ATM loss alone resulted in the development of indolent, clonal, mature B-cell lymphoma, combined ATM-loss and CyclinD1 overexpression accelerated and increased the incidence of B-cell lymphoma. Furthermore, ATM-loss combined with CyclinD1 overexpression led to greater genomic instability and the expansion of naïve ATM-deficient B-cells in the spleen. This study, for the first time, developed an ATM-deficient B-cell lymphoma model and demonstrated a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis. Furthermore, the mice described here provide a prototypic animal model to study the pathogenesis of human MCL, for which there are no suitable mouse models.
17

A Regulatory Role for ATM in Suppression of Mre11-Dependent DNA Degradation and Microhomology-Mediated End Joining

Rahal, Elias Adel January 2009 (has links)
ATM is the defective kinase in the neurodegenerative disorder ataxia telangiectasia. This kinase is associated with DNA double-strand break (DSB) repair and cell cycle control. Our laboratory previously demonstrated elevated levels of deletions and error-prone double-strand break repair via microhomology-mediated end joining (MMEJ) in ATM-deficient (A-T) extracts when compared to controls (wtATM+). To assess the involvement of enhanced nuclease activities in A-T extracts we studied the stability of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in detection from full-length products to shorter products in A-T extracts. Addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was dependent on its kinase activities. These results demonstrated a role for ATM in suppressing the degradation of DNA ends possibly through inhibiting nucleases implicated in MMEJ such as Mre11. Therefore, we assessed DNA end-stability in Mre11-depleted nuclear extracts and in extracts treated with the Mre11 nuclease inhibitor, Mirin. This resulted in decreased DNA degradation in both control and A-T extracts. Knockdown of Mre11 levels also led to an enhancement of DNA end-stability in nuclear extracts. Examining MMEJ levels by employing an in vivo reporter assay system revealed a decline in this pathway in Mre11-knockdown cells and in those treated with Mirin. These results signify a role for the Mre11 nuclease in MMEJ in mammalian cells and indicate a regulatory function for ATM in the control of error-prone DSB repair and preservation of DNA end-stability at a break.
18

Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model / iPS細胞モデルを用いたセッケル症候群関連ATR遺伝子変異の細胞種特異的スプライシングの確認及び矯正

Ichisima, Jose 23 July 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22006号 / 医科博第104号 / 新制||医科||7(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 井上 治久, 教授 伊佐 正, 教授 妻木 範行 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
19

Ataxia-Telangiectasia Mutated Kinase Deficiency Alters the Autophagic Response During Chronic Myocardial Infarction

Wingard, Mary, Dalal, Dr. Suman, Thrasher, Patsy, Daniel, Laura, Singh, Dr. Mahipal, Singh, Dr. Krishna 12 April 2019 (has links)
Background: Environmental and endogenous stresses induce genomic DNA damage. In order to combat cellular assaults and maintain genomic integrity, reparative processes including DNA damage repair (DDR) and autophagy are activated. A key protein involved in DDR is ataxia telangiectasia mutated kinase (ATM). Mutations in ATM gene cause a multi-systemic disease called ataxia telangiectasia. Approximately 1.4-2.0% of the population has heterozygous mutation in ATM gene, which associates with enhanced susceptibility to cancer and ischemic heart disease. Autophagy, a conserved catabolic process, functions to maintain genomic stability by the sequestration and removal of misfolded proteins and damaged organelles. Dysregulation of autophagy contributes to the pathogenesis of many diseases including heart disease. Previous work from our lab has demonstrated autophagic impairment in the myocardium of ATM deficient mice during an acute phase (4 hr) of myocardial infarction (MI). The objective of this study was to examine the role of ATM deficiency in autophagic impairment during a chronic phase (28 days) post-MI. Methods: Wildtype (WT) and ATM heterozygous knockout (hKO) mice underwent MI by the ligation of the left anterior descending artery. Expression and activity of proteins associated with autophagy were examined in the infarct left ventricular tissue 28 days post-MI using western blot analyses. The data were analyzed using ANOVA followed by Student-Newman-Keuls test. A p-value of Results: The ratio of microtubule-associated protein light chain 3 (LC3-II-to-LC3-I; an indicator of autophagic turnover) lower in hKO-sham vs WT-sham. MI led to significant decrease in this ratio in WT-MI vs WT-sham. Protein levels of p62 (an autophagic transport protein) remained unchanged among the four groups. Expression levels of beclin-1 (aids in the formation of the autophagophore) were similarly increased in both MI groups vs their sham controls. Levels of mature cathepsin D (a lysosomal protease involved in lysosomal degradation of misfolded proteins) were significantly higher in WT-MI vs WT-sham group. Interestingly, cathepsin D levels were significantly lower in hKO-MI vs WT-MI group. Activation of mTOR (a coordinator of autophagy, cell growth and metabolism) was significantly higher in hKO-MI, not in WT-MI, vs hKO-sham group. Activation of AMPK (a sensor and regulator of cellular energy homeostasis) was higher in WT-MI, not in hKO-MI, vs WT-sham. Conclusion: Thus, ATM deficiency alters autophagic response in the heart chronic post-MI.
20

High-Output Heart Failure Contributing to Recurrent Epistaxis Kiesselbach Area Syndrome in a Patient With Hereditary Hemorrhagic Telangiectasia

Bhattad, Venugopal Brijmohan, Bowman, Jennifer N., Panchal, Hemang B., Paul, Timir K. 01 January 2017 (has links)
Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a rare genetic blood disorder that leads to abnormal bleeding due to absent capillaries and multiple abnormal blood vessels known as arteriovenous malformations. A feature of HHT is high-output heart failure due to multiple arteriovenous malformations. High-output heart failure can lead to recurrent epistaxis Kiesselbach area syndrome (REKAS), further exacerbating heart failure through increased blood loss and resultant anemia. We report a patient with HHT who presented with high-output heart failure contributing to REKAS. In patients with REKAS, we propose if anemia is present, REKAS can be avoided by correcting the anemia by increasing the hemoglobin level to greater than 9 to 10 g/dL. This decreases hyperdynamic circulation and reduces pressure in the blood vessels of the nose.

Page generated in 0.0787 seconds