Spelling suggestions: "subject:"aab on-A-Chip"" "subject:"bab on-A-Chip""
131 |
A microfluidic approach for the initiation and investigation of surface-mediated signal transduction processes on a single-cell levelKirschbaum, Michael January 2009 (has links)
For the elucidation of the dynamics of signal transduction processes that are induced by cellular interactions, defined events along the signal transduction cascade and subsequent activation steps have to be analyzed and then also correlated with each other. This cannot be achieved by ensemble measurements because averaging biological data ignores the variability in timing and response patterns of individual cells and leads to highly blurred results. Instead, only a multi-parameter analysis at a single-cell level is able to exploit the information that is crucially needed for deducing the signaling pathways involved.
The aim of this work was to develop a process line that allows the initiation of cell-cell or cell-particle interactions while at the same time the induced cellular reactions can be analyzed at various stages along the signal transduction cascade and correlated with each other. As this approach requires the gentle management of individually addressable cells, a dielectrophoresis (DEP)-based microfluidic system was employed that provides the manipulation of microscale objects with very high spatiotemporal precision and without the need of contacting the cell membrane. The system offers a high potential for automation and parallelization. This is essential for achieving a high level of robustness and reproducibility, which are key requirements in order to qualify this approach for a biomedical application.
As an example process for intercellular communication, T cell activation has been chosen. The activation of the single T cells was triggered by contacting them individually with microbeads that were coated with antibodies directed against specific cell surface proteins, like the T cell receptor-associated kinase CD3 and the costimulatory molecule CD28 (CD; cluster of differentiation). The stimulation of the cells with the functionalized beads led to a rapid rise of their cytosolic Ca2+ concentration which was analyzed by a dual-wavelength ratiometric fluorescence measurement of the Ca2+-sensitive dye Fura-2. After Ca2+ imaging, the cells were isolated individually from the microfluidic system and cultivated further. Cell division and expression of the marker molecule CD69 as a late activation event of great significance were analyzed the following day and correlated with the previously recorded Ca2+ traces for each individual cell.
It turned out such that the temporal profile of the Ca2+ traces between both activated and non-activated cells as well as dividing and non-dividing cells differed significantly. This shows that the pattern of Ca2+ signals in T cells can provide early information about a later reaction of the cell.
As isolated cells are highly delicate objects, a precondition for these experiments was the successful adaptation of the system to maintain the vitality of single cells during and after manipulation. In this context, the influences of the microfluidic environment as well as the applied electric fields on the vitality of the cells and the cytosolic Ca2+ concentration as crucially important physiological parameters were thoroughly investigated. While a short-term DEP manipulation did not affect the vitality of the cells, they showed irregular Ca2+ transients upon exposure to the DEP field only. The rate and the strength of these Ca2+ signals depended on exposure time, electric field strength and field frequency. By minimizing their occurrence rate, experimental conditions were identified that caused the least interference with the physiology of the cell.
The possibility to precisely control the exact time point of stimulus application, to simultaneously analyze short-term reactions and to correlate them with later events of the signal transduction cascade on the level of individual cells makes this approach unique among previously described applications and offers new possibilities to unravel the mechanisms underlying intercellular communication. / Zelluläre Interaktionen sind wirkungsvolle Mechanismen zur Kontrolle zellulärer Zustände in vivo. Für die Entschlüsselung der dabei beteiligten Signaltransduktionsprozesse müssen definierte Ereignisse entlang der zellulären Signalkaskade erfasst und ihre wechselseitige Beziehung zueinander aufgeklärt werden. Dies kann von Ensemble-Messungen nicht geleistet werden, da die Mittelung biologischer Daten die Variabilität des Antwortverhaltens individueller Zellen missachtet und verschwommene Resultate liefert. Nur eine Multiparameteranalyse auf Einzelzellebene kann die entscheidenden Informationen liefern, die für ein detailliertes Verständnis zellulärer Signalwege unabdingbar sind.
Ziel der vorliegenden Arbeit war die Entwicklung einer Methode, welche die gezielte Kontaktierung einzelner Zellen mit anderen Zellen oder Partikeln ermöglicht und mit der die dadurch ausgelösten zellulären Reaktionen auf unterschiedlichen zeitlichen Ebenen analysiert und miteinander korreliert werden können. Da dies die schonende Handhabung einzeln adressierbarer Zellen erfordert, wurde ein auf Dielektrophorese (DEP) basierendes mikrofluidisches System eingesetzt, welches die berührungslose Manipulation mikroskaliger Objekte mit hoher zeitlicher und örtlicher Präzision erlaubt. Das System besitzt ein hohes Potential zur Automatisierung und Parallelisierung, was für eine robuste und reproduzierbare Analyse lebender Zellen essentiell, und daher eine wichtige Voraussetzung für eine Anwendung in der Biomedizin ist.
Als Modellsystem für interzelluläre Kommunikation wurde die T-Zell-Aktivierung gewählt. Die Aktivierung der einzelnen T-Zellen wurde durch ihre gezielte Kontaktierung mit Mikropartikeln („beads“) induziert, welche mit Antikörpern gegen spezielle Oberflächenproteine, wie die dem T-Zell-Rezeptor assoziierte Kinase CD3 oder das kostimulatorische Protein CD28, beschichtet waren. Die Stimulation der Zellen mit den funktionalisierten beads führte zu einem raschen Anstieg der intrazellulären Ca2+-Konzentration, welche über eine ratiometrische Detektion des Ca2+-sensitiven Fluoreszenzfarbstoffs Fura-2 gemessen wurde. Anschließend wurden die einzelnen Zellen aus dem mikrofluidischen System isoliert und weiterkultiviert. Am nächsten Tag wurden Zellteilung und die CD69-Expression – ein wichtiger Marker für aktivierte T-Zellen – analysiert und auf Ebene der individuellen Zelle mit dem zuvor gemessenen Ca2+-Signal korreliert.
Es stellte sich heraus, dass der zeitliche Verlauf des intrazellulären Ca2+-Signals zwischen aktivierten und nicht aktivierten, sowie zwischen geteilten und nicht geteilten Zellen signifikant verschieden war. Dies zeigt, dass Ca2+-Signale in stimulierten T-Zellen wichtige Informationen über eine spätere Reaktion der Zelle liefern können.
Da Einzelzellen äußerst empfindlich auf ihre Umgebungsbedingungen reagieren, war die Anpassung der experimentellen Vorgehensweise im Hinblick auf die Zellverträglichkeit von großer Bedeutung. Vor diesem Hintergrund wurde der Einfluss sowohl der mikrofluidischen Umgebung, als auch der elektrischen Felder auf die Überlebensrate und die intrazelluläre Ca2+-Konzentration der Zellen untersucht. Während eine kurzzeitige DEP-Manipulation im mikrofluidischen System die Vitalität der Zellen nicht beeinträchtigte, zeigten diese unregelmäßige Fluktuationen ihrer intrazellulären Ca2+-Konzentration selbst bei geringer elektrischer Feldexposition. Die Ausprägung dieser Fluktuationen war abhängig von der Expositionszeit, der elektrischen Feldstärke und der Feldfrequenz. Über die Minimierung ihres Auftretens konnten experimentelle Bedingungen mit dem geringsten Einfluss auf die Physiologie der Zellen identifiziert werden.
Die Möglichkeit, einzelne Zellen zeitlich definiert und präzise mit anderen Zellen oder Oberflächen zu kontaktieren, die unmittelbare Reaktion der Zellen zu messen und diese mit späteren Ereignissen der Zellantwort zu korrelieren, macht die hier vorgestellte Methode einzigartig im Vergleich mit anderen Ansätzen und eröffnet neue Wege, die der interzellulären Kommunikation zugrunde liegenden Mechanismen aufzuklären.
|
132 |
Microactuators for Powerful PumpsBodén, Roger January 2008 (has links)
When paraffin wax melts it exhibits a large, relatively incompressible volume expansion. This can be used in microactuators for strong and large displacements, a rare combination among actuators. Furthermore, paraffin is inexpensive, inert and environmentally friendly, as well as easily processed and actuated. Together, these properties give paraffin actuators great potential for use in both low-cost and high-performance applications. In microfluidics, the miniaturization of various analysis systems decreases the volumes of samples and reagents needed, as well as the analysis throughput time. Using on-chip micropumps increases the efficiency of the microfluidic system, but a challenge for such pumps is the high back-pressure associated with separation, filtration or narrower channels. The objective of this thesis is to increase the understanding of paraffin in microactuators, as well as to further explore its possibilities and limitations. The main application area has been on-chip micropumps. For low-cost applications, actuators, pumps and dispensers have been fabricated in plastics and then evaluated. The dispenser is intended for on-chip storage and dispensing of liquids in a lab-on-a-chip that could be used in, e.g., point-of-care testing (POCT). For high-performance applications, metallic actuators, pumps and dispensers have been accomplished. The micropump is the world’s strongest mechanical micropump in sub-cubic centimetre size, capable of pressures of above 5 MPa. Possible applications are strong microhydraulics, on-chip chromatography, or medical microdosage systems. A limitation of paraffin is the relatively slow thermal actuation. In this thesis the thermal properties have also been turned into an advantage: Directional solidification is used to accomplish multiple stable states of the actuator displacement, withheld without any power consumption. For the future, the high-pressure capability may be improved by new designs. Optimization of speed and power consumption can be made by further work on modelling as well as on drive and control of the heating.
|
133 |
Integrated Optical Slot-Waveguide Ring Resonator Sensor Arrays for Lab-on-Chip ApplicationsGylfason, Kristinn Björgvin January 2010 (has links)
This thesis treats the development of an integrated optical sensor array. The sensors are slot-waveguide ring resonators, integrated with on-chip surface grating couplers and light splitters, for alignment tolerant, real-time, refractive index sensing, and label-free biosensing. The work includes: the design of components and system layouts, the development of fabrication methods, the fabrication of sensor chips, the characterization of the chips, and the development of physical system models for accurate extraction of resonance wavelengths in measured spectra. The main scientific achievements include: The evaluation of a novel type of nano-structured optical waveguide for biochemical sensing. The realization of an array of such slot-waveguide sensors, integrated with microfluidic sample handling, for multiplex assays. The first study of the thermal behavior of slot-waveguide sensors and the discovery of unique temperature compensation capabilities. From an application perspective, the use of alignment tolerant surface gratings to couple light into the optical chip enables quick replacement of cartridges in the read-out instrument. Furthermore, the fabrication sequence avoids polishing of individual chips, and thus ensures that the cost benefits of silicon batch micro-fabrication can be leveraged in mass production. The high sensitivity of the slot waveguide resonators, combined with on-chip referencing and physical modeling, yields low limits of detection. The obtained volume refractive index detection limit of 5 × 10−6 refractive index units (RIU), and the surface mass density detection limit of 0.9 pg/mm2, shows that performance comparable to that of commercial non-integrated surface plasmon resonance sensors, made from bulk optical components, canbe achieved in a compact cartridge. / Qc20100715 / SABIO
|
134 |
Applications of Four-Colour Fluorescent Primer Extension Technology for SNP Analysis and DiscoveryAhlford, Annika January 2010 (has links)
Studies on genetic variation can reveal effects on traits and disease, both in humans and in model organisms. Good technology for the analysis of DNA sequence variations is critical. Currently the development towards assays for large-scale and parallel DNA sequencing and genotyping is progressing rapidly. Single base primer extension (SBE) is a robust reaction principle based on four-colour fluorescent terminating nucleotides to interrogate all four DNA nucleotides in a single reaction. In this thesis, SBE methods were applied to the analysis and discovery of single nucleotide polymorphism (SNP) in the model organism Drosophila melanogaster and in humans. The tag-array minisequencing system in a microarray format is convenient for intermediate sized genotyping projects. The system is scalable and flexible to adapt to specialized and novel applications. In Study I of the thesis a tool was established to automate quality control of clustered genotype data. By calculating “Silhouette scores”, the SNP genotype assignment can be evaluated by a single numeric measure. Silhouette scores were then applied in Study I to compare the performance of four DNA polymerases and in Study III to evaluate freeze-dried reagents in the tag-array minisequencing system. The characteristics of the tag-array minisequencing system makes it suitable for inexpensive genome-wide gene mapping in the fruit fly. In Study II a high-resolution SNP map, and 293 genotyping assays, were established across the X, 2nd and 3rd chromosomes to distinguish commonly used Drosophila strains. A database of the SNP markers and a program for automatic allele calling and identification of map positions of mutants was also developed. The utility of the system was demonstrated by rapid mapping of 14 genes that disrupt embryonic muscle patterning. In Study III the tag-array minisequencing system was adapted to a lab-on-a-chip format for diagnostic testing for mutations in the TP53 gene. Freeze-drying was evaluated for storing reagents, including thermo-sensitive enzymes, on the microchip to reduce the complexity of the integrated test. Correct genotyping results were obtained using freeze-dried reagents in each reaction step of the genotyping protocol, both in test tubes and in single polymer test chambers. The results showed the potential of the approach to be implemented in fully integrated systems. The four-colour chemistry of SBE has been developed further to allow massively parallel sequencing (MPS) of short DNA fragments as in the Genome Analyzer system (Solexa/Illumina). In Study IV MPS was used to compare Nimblegen arrays and the SureSelect solution-based system for targeted enrichment of 56 continuous human candidate-gene regions totalling 3.1 Mb in size. Both methods detected known SNPs and discovered novel SNPs in the target regions, demonstrating the feasibility for complexity reduction of sequencing libraries by hybridization methods.
|
135 |
Integration of Nanoparticle Cell Lysis and Microchip PCR as a Portable Solution for One-Step Rapid Detection of BacteriaWan, Weijie January 2011 (has links)
Bacteria are the oldest, structurally simplest, and most abundant forms of life on earth. Its detection has always been a serious question since the emerging of modern science and technology. There has been a phenomenal growth in the field of real-time bacteria detection in recent years with emerging applications in a wide range of disciplines, including medical analysis, food, environment and many more. Two important analytical functions involved in bacteria detection are cell lysis and polymerase chain reaction (PCR). Cell lysis is required to break cells open to release DNA for use in PCR. PCR is required to reproduce millions of copies of the target genes to reach detection limit from a low DNA concentration. Conventionally, cell lysis and PCR are performed separately using specialized equipments. Those bulky machines consume much more than needed chemical reagents and are very time consuming. An efficient, cost-effective and portable solution involving Nanotechnology and Lab-on-a-Chip (LOC) technology was proposed. The idea was to utilize the excellent antibacterial property of surface-functionalized nanoparticles to perform cell lysis and then to perform PCR on the same LOC system without having to remove them from the solution for rapid detection of bacteria.
Nanoparticles possess outstanding properties that are not seen in their bulk form due to their extremely small size. They were introduced to provide two novel methods for LOC cell lysis to overcome problems of current LOC cell lysis methods such as low efficiency, high cost and complicated fabrication process. The first method involved using poly(quaternary ammonium) functionalized gold and titanium dioxide nanoparticles which were demonstrated to be able to lyse E. coli completely in 10 minutes. The idea originated from the excellent antibacterial property of quaternary ammonium salts that people have been using for a long time. The second method involved using titanium dioxide nanoparticles and a miniaturized UV LED array. Titanium dioxide bears photocatalytic effect which generates highly reactive radicals to compromise cell membranes upon absorbing UV light in an aqueous environment. A considerable reduction of live E. coli was observed in 60 minutes. The thesis then evaluates the effect of nanoparticles on PCR to understand the roles nanoparticles play in PCR. It was found that gold and titanium dioxide nanoparticles induce PCR inhibition. How size of gold nanoparticles affected PCR was studied as well. Effective methods were discovered to suppress PCR inhibition caused by gold and titanium dioxide nanoparticles. The pioneering work paves a way for the integration of nanoparticle cell lysis and LOC PCR for rapid detection of bacteria. In the end, an integrated system involving nanoparticle cell lysis and microchip PCR was demonstrated. The prototyped system consisted of a physical microchip for both cell lysis and PCR, a temperature control system and necessary interface connections between the physical device and the temperature control system. The research explored solutions to improve PCR specificity in a microchip environment with gold nanoparticles in PCR. The system was capable of providing the same performance while reducing PCR cycling time by up to 50%. It was inexpensive and easy to be constructed without any complicated clean room fabrication processes. It can find enormous applications in water, food, environment and many more.
|
136 |
Design And Implementation Of Low Leakage Mems MicrovalvesYildirim, Ender 01 September 2011 (has links) (PDF)
This thesis presents analysis, design, implementation, and testing of electrostatically actuated MEMS microvalves. The microvalves are specifically designed for lab-on-a-chip applications to achieve leakage ratios below 0.1 at pressure levels in the order of 101 kPa.
For this purpose, two different microvalves are presented in the study. In the proposed designs, electrostatic actuation scheme is utilized to operate the microvalves in normally open and normally closed modes. Characterization of normally open microvalves show that, microvalves with radii ranging between
250
|
137 |
Optimization, Testing and Design-for-Testability of Flow-Based Microfluidic BiochipsHu, Kai 1 January 2015 (has links)
<p>Flow-based microfluidic biochips constitute an emerging technology for the automation of biochemical procedures. Recent advances in fabrication techniques have enabled the development of these devices. Increasing integration levels provide biochips with tremendous potential; a large number of bioassays, i.e., protocols for biochemistry, can be processed independently, simultaneously, and automatically on a coin-sized microfluidic platform. However, the increases in integration level introduce new challenges in the design optimization and the testing of these devices, which impede their further adoption and deployment.</p><p>This thesis is focused on enhancing the automated design and use of flow-based microfluidic biochips and on developing a set of solutions to facilitate the full exploitation of design complexities that are possible with current fabrication techniques. Four key research challenges are addressed in the thesis; these include design automation, wash optimization, testing, and defect diagnosis.</p><p>Despite the increase in the number of on-chip valves, designers are still using full-custom methodologies involving many manual steps to implement these chips. Since these chips can easily have thousands of valves, manual design procedure can be time-consuming and error-prone, and it can result in inefficient designs. This thesis presents the first problem formulation for automated control-layer design in flow-based microfluidic biochips and describes a systematic approach for solving this problem. Our goal is to find an efficient routing solution for control-layer design with a minimum number of control pins.</p><p>The problem of contamination removal in flow-based microfluidic biochips must also be addressed. Applications in biochemistry require high precision to avoid erroneous assay outcomes, and they are vulnerable to contamination between two fluidic flows with different biochemistries. This thesis proposes the first approach for automated wash optimization for contamination removal in flow-based microfluidic biochips. The proposed approach ensures effective cleaning and targets the generation of wash pathways to clean all contaminated microchannels with minimum execution time under physical constraints.</p><p>Another practical problem addressed in this thesis is the lack of test techniques for screening defective biochips before they are used for biochemical analysis. This thesis presents an efficient approach for automated testing of flow-based microfluidic biochips. The test technique is based on a behavioral abstraction of physical defects in microchannels and valves. The flow paths and flow control in the microfluidic device are modeled as a logic circuit composed of Boolean gates, which allows test generation to be carried out using standard automatic test-pattern generation tools. Based on the analysis of untestable faults in the logic-circuit model, we present a design-for-testability technique that can achieve 100\% fault coverage.</p><p>Finally, this thesis presents a technique for the automated diagnosis of leakage and blockage defects. The proposed method targets the identification of defect types and their locations based on test outcomes. It reduces the number of possible defect sites significantly while identifying their exact locations.</p><p>In summary, this thesis has led to a set of optimization and testing methods for flow-based microfluidic biochips. The results of this research are expected to not only shorten the product development cycle, but also accelerate the adoption and further development of this emerging technology by facilitating the full exploitation of design complexities that are possible with current fabrication techniques.</p> / Dissertation
|
138 |
Σχεδιασμός, ανάλυση και υλοποίηση κυκλωμάτων για τη μέτρηση και τον έλεγχο χωρητικών και ηλεκτροχημικών αισθητήρωνΡάμφος, Ιωάννης 07 May 2015 (has links)
Τα συστήματα μοριακής διαγνωστικής έχουν έρθει στο προσκήνιο τα τελευταία χρόνια δίνοντας τη δυνατότητα για αυτοματοποιημένες, αξιόπιστες, γρήγορες και χαμηλού κόστους βιολογικές αναλύσεις. Τέτοια συστήματα χαρακτηρίζονται από σύνθετη λειτουργικότητα, η οποία συνδυάζει πληθώρα ενεργοποιητών και αισθητήρων που συνεργάζονται για την εκτέλεση βιολογικών πρωτοκόλλων. Με βάση τα πρωτόκολλα αυτά και με τη χρήση μικροροϊκών συστημάτων, τα βιολογικά δείγματα και αντιδραστήρια υποβάλλονται σε διάφορα στάδια επεξεργασίας. Κατόπιν της επεξεργασίας τους, τα δείγματα υπό μελέτη καταλήγουν πάνω στην επιφάνεια αισθητήρων, οι οποίοι είναι ειδικά ευαισθητοποιημένοι ώστε να ανιχνεύουν συγκεκριμένες βιολογικές αλληλεπιδράσεις ενδιαφέροντος και να αποκρίνονται μεταβάλλοντας αναλόγως ένα φυσικό μέγεθος, μετρήσιμο από ηλεκτρονικά κυκλώματα.
Τα ηλεκτρονικά κυκλώματα ανάγνωσης των αισθητήρων αποτελούν ένα από τα κυριότερα τμήματα ενός συστήματος μοριακής διαγνωστικής, καθώς βάσει της απόκρισης αυτών προκύπτουν τα διαγνωστικά αποτελέσματα. Κατά συνέπεια, αναγνωρίζεται ο σημαντικός ρόλος που κατέχουν στη συνολική αναλυτική διαδικασία. Είναι απαραίτητο οι μετρήσεις που εκτελούν να χαρακτηρίζονται από μεγάλη ακρίβεια με υψηλή διακριτική ικανότητα για κάθε αισθητήριο στοιχείο. Ταυτόχρονα όμως, πρέπει να εξασφαλίζεται και η αξιοπιστία της μέτρησης σε επίπεδο βιολογικής διεργασίας. Σε αυτό το στόχο συντελεί η χρήση συστοιχιών αισθητήρων, με τις οποίες η ίδια μέτρηση μπορεί να εκτελεστεί παράλληλα σε πολλά στοιχεία και συνοδεύεται από μετρήσεις θετικού και αρνητικού ελέγχου. Πάνω στη συστοιχία μπορούν να εκτελεστούν και συμπληρωματικές μετρήσεις περισσότερων δειγμάτων, ώστε τα αποτελέσματα που εξάγονται να δίνουν μια πιο ολοκληρωμένη αναλυτική εικόνα. Υπό αυτό το πρίσμα, οι μεγάλου μεγέθους συστοιχίες αισθητήρων μπορούν να προσφέρουν βέλτιστα αποτελέσματα.
Η παρούσα διδακτορική διατριβή επικεντρώνεται στα κυκλώματα ανάγνωσης συστοιχιών χωρητικών και ηλεκτροχημικών αισθητήρων, δύο ευρέως χρησιμοποιούμενων τεχνολογιών αισθητήρων. Η αρχή λειτουργίας των χωρητικών αισθητήρων βασίζεται στο γεγονός ότι οι αλληλεπιδράσεις βιομορίων που μελετούνται ασκούν δυνάμεις και παραμορφώνουν την ευέλικτη μεμβράνη πυριτίου που αποτελεί τον έναν οπλισμό ενός μεταβλητού πυκνωτή. Συνέπεια αυτής της παραμόρφωσης είναι η ανάλογη μεταβολή της χωρητικότητας που παρουσιάζει η μεμβράνη με το υπόστρωμα πυριτίου, μεταβολή που μετράται από το κύκλωμα. Στην περίπτωση των ηλεκτροχημικών αισθητήρων, η αντίστοιχη αλληλεπίδραση βιομορίων, με τη βοήθεια βιομορίων σήμανσης, προκαλεί τη μεταβολή της αγωγιμότητας μεταξύ των ηλεκτροδίων τους. Υπό ελεγχόμενες συνθήκες πόλωσης τάσης, το αναπτυσσόμενο ρεύμα που μετράται αντιστοιχεί στην εξέλιξη του βιολογικού φαινομένου.
Ιδιαίτερη έμφαση δίνεται στις δυνατότητες κλιμάκωσης της εκάστοτε αρχιτεκτονικής ώστε να είναι επεκτάσιμη στην ανάγνωση πολύ μεγάλων συστοιχιών αισθητήρων με βέλτιστο τρόπο, διατηρώντας μικρές διαστάσεις για τα κυκλώματα ανάγνωσης. Συγχρόνως, εξασφαλίζεται με διάφορες στρατηγικές η ορθή λήψη μετρήσεων από κάθε στοιχείο, χωρίς την επίδραση από τα υπόλοιπα μέλη της συστοιχίας.
Για την ανάγνωση συστοιχιών χωρητικών αισθητήρων σχεδιάστηκε και υλοποιήθηκε ολοκληρωμένο κύκλωμα σε τεχνολογία 0.35 μm, που στον πυρήνα της μέτρησης διαθέτει έναν ταλαντωτή χαλάρωσης με βρόχο υστέρησης ρεύματος. Υποστηρίζεται από προγραμματιζόμενες πηγές ρεύματος διέγερσης ώστε να καλύπτεται ένα ευρύ φάσμα χωρητικοτήτων για τους αισθητήρες. Το σύστημα πολύπλεξης που αναπτύχθηκε για τη διασύνδεση κάθε μέλους από τις συστοιχίες αισθητήρων πάνω στον πυρήνα ανάγνωσης μπορεί να διαχειριστεί πεπλεγμένες συστοιχίες, όπου τα στοιχεία είναι οργανωμένα με κοινές γραμμές και στήλες ηλεκτρικών επαφών στους οπλισμούς τους. Με αυτόν τον τρόπο είναι δυνατή η δημιουργία μεγάλων συστοιχιών με μικρό πλήθος ακροδεκτών διασύνδεσης.
Η πρόκληση της ανάγνωσης τέτοιου είδους συστοιχιών έγκειται στις αλληλεπιδράσεις μεταξύ των στοιχείων, λόγω ανεπιθύμητων μονοπατιών στο ρεύμα φόρτισης του ταλαντωτή. Μία πρώτη αντιμετώπιση αυτού του προβλήματος διαφωνίας γίνεται με τη χρήση διακοπτών δύο καταστάσεων στις μονάδες πολύπλεξης, ώστε να ελέγχεται ο τρόπος με τον οποίο διεγείρεται το μετρούμενο καθώς και τα υπόλοιπα στοιχεία κατά τη μέτρηση. Με διαδοχικές μετρήσεις υπό διαφορετικές συνδεσμολογίες στους πολυπλέκτες και με κατάλληλη μαθηματική επεξεργασία, μπορούν να εξαχθούν ακριβείς μετρήσεις για την κατάσταση κάθε αισθητήρα της συστοιχίας. Η στατικότητα του συστήματος κατά τη διάρκεια των διαδοχικών μετρήσεων που είναι προϋπόθεση για το σωστό υπολογισμό των αποτελεσμάτων, βασίζεται στην ιδιαίτερα αργή εξέλιξη των βιολογικών φαινομένων στην επιφάνεια των αισθητήρων.
Στα πλαίσια της διατριβής έγινε και ένας επανασχεδιασμός του κυκλώματος ανάγνωσης συστοιχιών, σε επίπεδο σχηματικού και φυσικού σχεδιασμού, του οποίου η λειτουργία επιβεβαιώθηκε με post-layout εξομοιώσεις. Σε αυτή την ανάπτυξη έγινε προσθήκη επιπλέον υπομονάδων και η βελτίωση των υπαρχουσών. Από τα κύρια χαρακτηριστικά αυτού του σχεδιασμού είναι μια μονάδα απομονωτή, που προσφέρει έναν δεύτερο τρόπο αντιμετώπισης του προβλήματος διαφωνίας μεταξύ των στοιχείων, αποτρέποντας το ρεύμα φόρτισης του ταλαντωτή να οδηγηθεί προς μη επιθυμητά στοιχεία. Επιπλέον, οι μονάδες ταλάντωσης που χρησιμοποιεί το επανασχεδιασμένο κύκλωμα είναι δύο, για ταυτόχρονη ανάγνωση αισθητήρων και ταχύτερη σάρωση μεγάλων συστοιχιών, με το εύρος του προγραμματιζόμενου ρεύματος να είναι μεγαλύτερο, καλύπτοντας μεγαλύτερο φάσμα αισθητήρων. Τέλος, αυτή η έκδοση του κυκλώματος έχει πιο αυτόνομο χαρακτήρα, με την ενσωμάτωση ενός υποσυστήματος σειριακής επικοινωνίας και ελέγχου.
Για τη δεύτερη τεχνολογία αισθητήρων που καλύπτει η παρούσα διατριβή, των ηλεκτροχημικών αισθητήρων, σχεδιάστηκαν και υλοποιήθηκαν κυκλώματα ανάγνωσης συστοιχιών με χρήση διακριτών στοιχείων, καθώς επίσης και κυκλώματα με το βασικό πυρήνα μέτρησης να υλοποιείται σε ολοκληρωμένη μορφή με τεχνολογία 90 nm. Για τους σχεδιασμούς αυτούς έχει αναπτυχθεί η τεχνική της υβριδικής πολύπλεξης, βάσει της οποίας τα μέλη της συστοιχίας ομαδοποιούνται καταλλήλως, ώστε να επιτευχθούν οι απαιτούμενες επιδόσεις σε ρυθμούς δειγματοληψίας από το κύκλωμα ανάγνωσης, ενώ παράλληλα το μέγεθος του κυκλώματος παραμένει μικρό. Η υβριδική πολύπλεξη συνδυάζει διαδοχική ανάγνωση με παράλληλη ανάγνωση στοιχείων, κάνοντας χρήση πολυπλεκτών και κατάλληλου αριθμού υποσυστημάτων μέτρησης που επαναχρησιμοποιούνται για πολλά αισθητήρια στοιχεία. Η ιδιαιτερότητα που έχουν αυτού του τύπου οι μετρήσεις έγκειται στην απαίτηση για διαρκή πόλωση όλων των στοιχείων χωρίς διακοπή της ροής του ρεύματος μέσω αυτών, που καλύπτεται μέσω ειδικά διαμορφωμένων πολυπλεκτών δύο καταστάσεων οι οποίοι εξασφαλίζουν τις σωστές συνθήκες λειτουργίας.
Επιπρόσθετες βελτιώσεις που παρέχει η υλοποίηση του κυκλώματος ανάγνωσης σε μορφή ολοκληρωμένου είναι η δυνατότητα εναλλαγής μεταξύ δύο τύπων κυκλωμάτων μέτρησης, με χρήση ενισχυτή διαντίστασης και ολοκληρωτή. Οι δύο τρόποι μέτρησης χρησιμοποιούνται συμπληρωματικά, ώστε να καλυφθεί μεγάλη δυναμική περιοχή λειτουργίας και γρήγορη απόκριση, αλλά και υψηλή ανάλυση, ανάλογα με τις απαιτήσεις κατά τη διάρκεια της πειραματικής διαδικασίας.
Για το χαρακτηρισμό των κυκλωμάτων ανάγνωσης που αναπτύχθηκαν και για τις δύο τεχνολογίες αισθητήρων, έγιναν μετρήσεις με πρότυπα φορτία, καθώς και με συστοιχίες, για να εξαχθούν συμπεράσματα για την απόκρισή τους. Κατόπιν των ελέγχων καλής λειτουργίας των κυκλωμάτων και των μεθόδων που ακολουθούνται, πραγματοποιήθηκαν και επιτυχείς μετρήσεις βιολογικής σημασίας, που επιβεβαιώθηκαν από συστήματα αναφοράς. / Molecular diagnostics systems have come to the forefront in recent years allowing for automated, reliable, rapid and inexpensive bioassays. Such systems are characterized by complex functionality, which combines variety of actuators and sensors that cooperate to perform biological protocols. Based on these protocols and using microfluidic systems, biological samples and reagents are subjected to various processing steps. Following this treatment, the samples under study are placed on the surface of sensors, which are functionalized to detect specific biological interactions of interest and respond accordingly by changing a physical quantity, measurable by electronic circuits.
The sensor readout electronic circuits are one of the main parts of a molecular diagnostics system, as the diagnostic results are based on their response. Consequently, it is recognized that they hold an important role in the overall analytical process. It is necessary that the measurements they perform are highly accurate with high resolution for each sensor element. At the same time, the reliability of the measurement at a biological process level must be ensured. To this aim contributes the use of sensor arrays, with which the same measurement can be performed in parallel on many elements and accompanied by positive and negative control measurements. On the array, additional measurements of multiple samples can be performed, so that the output results give a more comprehensive analytical picture. In this light, large sensor arrays can provide optimal results.
This thesis focuses on the readout circuitry for capacitive and electrochemical sensor arrays, two widely used sensor technologies. The operating principle of capacitive sensors is based on the fact that the interactions between the biomolecules under study exert forces and deform the flexible silicon film constituting an armature of a variable capacitor. The consequence of this deformation is a proportional change in capacitance between the film and the silicon substrate, a variation measured by the circuit. In the case of electrochemical sensors, the respective interaction of biomolecules, with the aid of labeling biomolecules, causes a change in conductivity between their electrodes. Under controlled bias voltage conditions, the resulting current that is measured corresponds to the progress of the biological phenomenon.
Particular emphasis is given to the scalability potential of each architecture, so it can be optimally expanded for reading very large sensor arrays, maintaining small dimensions for the readout circuits. At the same time, through various strategies it is ensured that measurements of each element are properly acquired, without influence from other members in the array.
To read out the capacitive sensor arrays an integrated circuit based on a 0.35 μm technology was designed and implemented, which at its measuring core uses a relaxation oscillator with a current hysteresis loop. It is complemented by programmable excitation current sources to cover a wide range of capacitances for the sensors. The multiplexing system that was developed to connect each member of the sensor arrays on the readout core can handle 'entangled' arrays, where the elements are arranged with common lines and columns of electrical contacts at their armatures. In this way it is possible to create large arrays with a small number of interface terminals.
The challenge of reading such arrays lies in the interactions between the elements, because of side paths in the oscillator charging current. A first way to address this crosstalk problem is the use of two-state switches in the multiplexing units, in order to control the way in which the measured element is excited, as well as the other array elements, during measurement. Through successive measurements under different connection configurations on the multiplexers and appropriate mathematical processing, accurate measurements for the status of each sensor in the array can be obtained. The measured system can be considered static during successive measurements, which is a prerequisite for the correct calculation of results, due to the very slow progress of biological phenomena on the surface of the sensors.
In the course of this thesis, a redesign of the array readout circuit was made, at a schematic and physical layout design level, the function of which was confirmed by post-layout simulations. In this development extra submodules were incorporated and existing ones were improved. One of the main features of this design is a buffer unit, which offers a second way of addressing the crosstalk problem between the elements, by preventing the oscillator charging current to excite undesirable elements. Furthermore, the redesigned circuit uses two oscillation units for simultaneous sensor readout and faster scanning of large arrays, with the range of their programmable current being greater, covering a larger spectrum of sensors. Finally, this version of the circuit has a more autonomous nature, by incorporating a serial communication and control subsystem.
For the second sensor technology covered by this thesis, the electrochemical sensors, array readout circuits were designed and implemented using discrete components, as well as circuits with the basic measurement core being implemented in integrated form using a 90 nm technology. For these designs the technique of hybrid multiplexing was developed, whereby the members of the array are grouped appropriately to achieve the required performance in sampling rate from the readout circuit, while the size of the circuit remains small. Hybrid multiplexing combines sequential and parallel element reading, using multiplexers and the appropriate number of measurement subsystems that are reused for many sensing elements. The particularity of this type of measurements is the requirement for continuous biasing of all elements without interruptions in the current flow through them, which is addressed by specially configured two-state multiplexers that ensure the correct operating conditions.
Additional enhancements offered by the implementation of the readout circuit in integrated form is the ability to switch between two types of measurement circuits, using a transimpedance amplifier and an integrator. The two modes of measurement are used in complement, to cover a wide operating dynamic range and fast response, and also high resolution, depending on the requirements during the experimental process.
For the characterization of the readout circuits developed for both sensor technologies, measurements were made using standard loads, as well as arrays, to draw conclusions about their response. Following the validation of the proper operation of the circuits and methods used, successful measurements of biological significance were made, which were confirmed by reference systems.
|
139 |
Integration of Nanoparticle Cell Lysis and Microchip PCR as a Portable Solution for One-Step Rapid Detection of BacteriaWan, Weijie January 2011 (has links)
Bacteria are the oldest, structurally simplest, and most abundant forms of life on earth. Its detection has always been a serious question since the emerging of modern science and technology. There has been a phenomenal growth in the field of real-time bacteria detection in recent years with emerging applications in a wide range of disciplines, including medical analysis, food, environment and many more. Two important analytical functions involved in bacteria detection are cell lysis and polymerase chain reaction (PCR). Cell lysis is required to break cells open to release DNA for use in PCR. PCR is required to reproduce millions of copies of the target genes to reach detection limit from a low DNA concentration. Conventionally, cell lysis and PCR are performed separately using specialized equipments. Those bulky machines consume much more than needed chemical reagents and are very time consuming. An efficient, cost-effective and portable solution involving Nanotechnology and Lab-on-a-Chip (LOC) technology was proposed. The idea was to utilize the excellent antibacterial property of surface-functionalized nanoparticles to perform cell lysis and then to perform PCR on the same LOC system without having to remove them from the solution for rapid detection of bacteria.
Nanoparticles possess outstanding properties that are not seen in their bulk form due to their extremely small size. They were introduced to provide two novel methods for LOC cell lysis to overcome problems of current LOC cell lysis methods such as low efficiency, high cost and complicated fabrication process. The first method involved using poly(quaternary ammonium) functionalized gold and titanium dioxide nanoparticles which were demonstrated to be able to lyse E. coli completely in 10 minutes. The idea originated from the excellent antibacterial property of quaternary ammonium salts that people have been using for a long time. The second method involved using titanium dioxide nanoparticles and a miniaturized UV LED array. Titanium dioxide bears photocatalytic effect which generates highly reactive radicals to compromise cell membranes upon absorbing UV light in an aqueous environment. A considerable reduction of live E. coli was observed in 60 minutes. The thesis then evaluates the effect of nanoparticles on PCR to understand the roles nanoparticles play in PCR. It was found that gold and titanium dioxide nanoparticles induce PCR inhibition. How size of gold nanoparticles affected PCR was studied as well. Effective methods were discovered to suppress PCR inhibition caused by gold and titanium dioxide nanoparticles. The pioneering work paves a way for the integration of nanoparticle cell lysis and LOC PCR for rapid detection of bacteria. In the end, an integrated system involving nanoparticle cell lysis and microchip PCR was demonstrated. The prototyped system consisted of a physical microchip for both cell lysis and PCR, a temperature control system and necessary interface connections between the physical device and the temperature control system. The research explored solutions to improve PCR specificity in a microchip environment with gold nanoparticles in PCR. The system was capable of providing the same performance while reducing PCR cycling time by up to 50%. It was inexpensive and easy to be constructed without any complicated clean room fabrication processes. It can find enormous applications in water, food, environment and many more.
|
140 |
Theoretical investigation of thermal tweezers for parallel manipulation of atoms and nanoparticles on surfacesMason, Daniel Riordean January 2009 (has links)
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
|
Page generated in 0.0434 seconds