Spelling suggestions: "subject:"lagerstätte"" "subject:"laggerstätte""
21 |
The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral ExplorationLorenz, Sandra 06 November 2019 (has links)
Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften. / Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context.
These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications.
|
22 |
Two Centuries of Commodity Cycles - Dynamics of the Metals & Mining Industry in light of Modern Portfolio TheoryPfeifer, Jan 14 July 2020 (has links)
This thesis explores the application of Markowitz' Modern Portfolio Theory onto 220 years of financial returns for 13 metals and 21 poly-metallic ore types. The interdisciplinary research shows that poly-metallic ores can be described as naturally occurring portfolios that were diversified by natural geological processes. Safest and optimal portfolios for metals and ores can be computed for different time horizons using portfolio optimization algorithms. Results for optimized ore portfolios are thereby subject to geological constraints. The study revealed that commodity cycles last between six and twenty years and exhibit clockwise and counterclockwise motions in the risk-return framework. The cycle length differences for clockwise cycles are statistically significant and thus specific to all investigated metals and ores. By incorporating novel cycle parameters into decision making tools it is suggested that current industry decisions for resource development can be improved. Insights into the performance of metals and ores through the industrial cycles, as well as into the frequency of profitable super cycles can assist Metals & Mining executives in strategic planning and investment.:Introduction 1
Data 3
Metals & ore types studied 5
2.1 Metals.......................................... 5
2.2 Ore types ........................................ 5
2.3 Prices .......................................... 10
2.4 Summary ........................................ 12
II Analysis 13
3 Modern Portfolio Theory 15
3.1 Overview ........................................ 15
3.2 Definitions........................................ 15
3.3 Assumptions ...................................... 17
3.4 Discussion & Conclusion................................ 18
4 Poly-metallic ores as natural portfolios 19
4.1 Objectives........................................ 19
4.2 Results.......................................... 19
4.3 Summary & Discussion................................. 24
4.4 Conclusion ....................................... 25
5 Static portfolio optimization 27
5.1 Objectives........................................ 27
5.2 Assumptions ...................................... 27
5.3 Results.......................................... 27
5.4 Summary & Discussion................................. 31
5.5 Conclusion ....................................... 32
6 Dynamic portfolio optimization 33
6.1 Assumptions ...................................... 33
6.2 Results.......................................... 34
6.3 Summary & Discussion................................. 44
6.4 Conclusion ....................................... 45
7 Commodity cycles & metal assets 47
7.1 Commodity cycles ................................... 47
7.2 Commodity cycle observations ............................ 54
7.3 Summary ........................................ 76
7.4 Discussion........................................ 77
7.5 Conclusion ....................................... 78
III Application 81
8 Commodity cycles & resource development strategies 83
8.1 The timing of mine development and mining start-up................ 83
8.2 Lead times from discovery to operation........................ 88
8.3 Exploration....................................... 89
8.4 Project valuation considerations............................ 91
8.5 Summary & Discussion................................. 92
8.6 Conclusion ....................................... 93
9 Industrial cycles & modern history 95
9.1 The Metal Markets Indicator-MMI ......................... 95
9.2 The Metal Markets Indicator & the economy .................... 97
9.3 The MMI & military conflict ............................. 105
9.4 MMI cyclicality..................................... 115
9.5 Summary & Discussion................................. 122
9.6 Conclusion ....................................... 123
10 Industrial cycles & metal performance 125
10.1 Methodology ...................................... 125
10.2 Metal performance during technological epochs ................ 126
10.3 Discussion........................................ 133
10.4 Conclusion ....................................... 137
11 Industrial cycles & ore type preferences 139
11.1 Coal Age ........................................ 139
11.2 Oil Age ......................................... 142
11.3 Atomic Age....................................... 144
11.4 Discussion........................................ 146
11.5 Conclusion ....................................... 150
12 Industrial cycles & ore provinces 151
12.1 Ore genetic models and industrial cycles....................... 151
12.2 Ore geology and geography .............................. 154
12.3 Ore provenances and mining technology ....................... 156
12.4 Discussion........................................ 157
12.5 Conclusion ....................................... 157
13 The state and future of the M&M Industry 159
13.1 The current state.................................... 159
13.2 The dawn of a new Industrial Age .......................... 163
13.3 The future........................................ 164
13.4 Summary & Discussion................................. 167
13.5 Conclusion ....................................... 168
14 Summary 169
15 Conclusion 171
IV Appendix 173
Bibliography 233
Index 245
|
23 |
Hyperspectral drill-core scanning in geometallurgyTusa, Laura 01 June 2023 (has links)
Driven by the need to use mineral resources more sustainably, and the increasing complexity of ore deposits still available for commercial exploitation, the acquisition of quantitative data on mineralogy and microfabric has become an important need in the execution of exploration and geometallurgical test programmes. Hyperspectral drill-core scanning has the potential to be an excellent tool for providing such data in a fast, non- destructive and reproducible manner. However, there is a distinct lack of integrated methodologies to make use of these data through-out the exploration and mining chain. This thesis presents a first framework for the use of hyperspectral drill-core scanning as a pillar in exploration and geometallurgical programmes. This is achieved through the development of methods for (1) the automated mapping of alteration minerals and assemblages, (2) the extraction of quantitative mineralogical data with high resolution over the drill-cores, (3) the evaluation of the suitability of hyperspectral sensors for the pre-concentration of ores and (4) the use of hyperspectral drill- core imaging as a basis for geometallurgical domain definition and the population of these domains with mineralogical and microfabric information.:Introduction
Materials and methods
Assessment of alteration mineralogy and vein types using hyperspectral data
Hyperspectral imaging for quasi-quantitative mineralogical studies
Hyperspectral sensors for ore beneficiation
3D integration of hyperspectral data for deposit modelling
Concluding remarks
References
|
24 |
Rohstoffprognosen für Zinn, Wolfram, Fluss- und Schwerspat im MittelerzgebirgeBrosig, Andreas, Barth, Andreas, Knobloch, Andreas, Dickmayer, Ellen 04 January 2022 (has links)
Im Rahmen des Projektes ROHSA 3 wurden auf Basis vorhandener und neu verfügbar gemachter Daten Prognosen für Zinn, Wolfram sowie Fluss- und Schwerspat in einem 740 m² großen Gebiet im Mittelerzgebirge angefertigt. Die Karten zeigen höffige Gebieten, wobei für Zinn und Wolfram erstmals auch Mengen-Prognosen erstellt wurden. Geophysikalische, geochemische Daten sowie Lagerstättenindikatoren (z. B. Tektonik, Erz kontrollierende Lithologien) wurden durch die Software advangeo@ aufbereitet und mittels ihrer künstlich neuronalen Netze (KNN) verarbeitet. Durch höhere Datendichte, Einbeziehung dreidimensionaler geologischer Daten und Aufstellung quantitativer Modelle wurde ein deutlicher Erkenntnisfortschritt erzielt.
Redaktionsschluss: 31.07.2020
|
25 |
Minerogeny of the Pan-African Volta Basin of GhanaBoamah, Kwame 10 April 2017 (has links) (PDF)
Within the framework of this research, the complex geological history of the Pan African-Volta basin has been systematically reconstructed. Based on a broad review of literature and new data, 5 stages of geological-tectonic development have been identified. For the first time a systematic review of the mineral potential of the Pan-African Volta Basin was executed. Known and potentially existing mineralization have been related to the geotectonic history and metallogenetic conclusions have been drawn.
Based on the findings of this research, the folded thrust belt located at the eastern rim of the Volta basin has been identified as the most prospective area for the ultramafic rocks with chromite, nickel mineralization and PGEs, hydrothermal gold and banded iron formation (BIF) but this will require further work.
|
26 |
MINESTIS, the route to resource estimatesWagner, Laurent 03 November 2015 (has links) (PDF)
Minestis software allows geological domain modeling and resource estimation through an efficient and simplified geostatistics-based workflow. It has been designed for all those, geologists, mining engineers or auditors, for whom quick production of quality models is at the heart of their concerns.
|
27 |
MINESTIS, the route to resource estimates: Presentation of 3D geomodeling software, held at IAMG 2015 in FreibergWagner, Laurent 03 November 2015 (has links)
Minestis software allows geological domain modeling and resource estimation through an efficient and simplified geostatistics-based workflow. It has been designed for all those, geologists, mining engineers or auditors, for whom quick production of quality models is at the heart of their concerns.
|
28 |
Minerogeny of the Pan-African Volta Basin of GhanaBoamah, Kwame 04 March 2017 (has links)
Within the framework of this research, the complex geological history of the Pan African-Volta basin has been systematically reconstructed. Based on a broad review of literature and new data, 5 stages of geological-tectonic development have been identified. For the first time a systematic review of the mineral potential of the Pan-African Volta Basin was executed. Known and potentially existing mineralization have been related to the geotectonic history and metallogenetic conclusions have been drawn.
Based on the findings of this research, the folded thrust belt located at the eastern rim of the Volta basin has been identified as the most prospective area for the ultramafic rocks with chromite, nickel mineralization and PGEs, hydrothermal gold and banded iron formation (BIF) but this will require further work.:Table of contents
Table of contents iii
List of tables v
List of figures 1
Introduction 5
Summary of work done 6
Acknowledgements 6
1 In the Geology and regional geotectonic development of the West African Shield 7
1.1 Introduction 7
1.2 The basement of the Proterozoic sedimentary platform cover 9
1.3 Connection of West African Shield to Brazil 10
1.4 The Neoproterozoic sedimentary sequence and the extent of the Volta Basin 13
1.4.1 Introduction 13
1.4.2 The Neoproterozoic Sedimentary Sequence 15
1.5 The Pan-African Mobile Belt 23
1.5.1 The Buem Fold and thrust belt 23
1.5.2 New defined units 30
1.6 Interpretation of the deep structure of the Volta Basin 35
1.7 Metallic Minerals 37
1.7.1 Introduction 37
1.7.2 Iron (Fe) 39
1.7.3 Aluminium (Al) 46
1.7.4 Manganese (Mn) 50
1.7.5 Lead (Pb) 52
1.7.6 Copper (Cu) 55
1.7.7 Mineralisation related to ultramafic rocks 57
1.7.8 Gold (Au) 69
1.7.9 Tantalum (Ta) 72
1.7.10 Zirconium (Zr) 73
1.7.11 Heavy minerals in sands of Paleochannels 76
1.8 Non-metallic minerals 83
1.8.1 Introduction 83
1.8.2 Limestone (CaCO3) 84
1.8.3 Magnesite (MgCO3) 91
1.8.4 Barite (BaSO4) 93
1.8.5 Diamonds 97
1.8.6 Bitumen 100
1.9 Mineral Prediction with advangeo® Prediction Software 102
2 Minerogeny 109
2.1 Mineralisation controls and indicators 109
2.1.1 Geochemical Properties of selected stratigraphic units 109
2.1.2 Intrusive rocks 114
2.1.3 Volcanic rocks 118
2.1.4 Fault structural controls 119
2.1.5 Reactive Rocks 121
2.1.6 Other sedimentary controls: placers and paleoplacers 122
2.1.7 Laterites 122
2.1.8 Control of diamond occurrences 132
2.2 Key stages of metallogenic development 132
3 Discussion and recommendations 136
3.1 Recommendations 138
4 List of References 139
5 Appendices 144
5.1.1 Sample G113RK1 144
5.1.2 Sample G109RK1 145
5.1.3 Sample G116RK1 147
5.1.4 Sample G121RK1 149
5.1.5 Sample G121RK2 151
5.1.6 Sample G121RK3 152
5.1.7 Sample G131RK1 154
5.1.8 Sample G144RK2 155
5.1.9 Sample G145RK1 156
5.1.10 Sample G147RK1 157
5.2 Thin Sections 159
5.3 Deep drilling Data 174
5.4 Geophysical Datasets 176
5.5 Geochemical properties of volcanic rocks 181
5.6 Regional Geochemical Datasets (MSSP) 186
5.6.1 Methodology of data processing 188
5.7 Geochemical analysis – Electronic Dump 190
5.8 Geochemical properties of selected geo-tectonic units 190
5.8.1 Epicratonic basin 190
5.8.2 Foreland Basin 195
5.8.3 Thrusted continental margin 202
|
29 |
Magmatic-Hydrothermal Events, Mineralogy and Geochemistry of Tourmaline Breccia in the Giant Río Blanco – Los Bronces Porphyry Copper Deposit, Central ChileHohf Riveros, Michael 26 April 2021 (has links)
The Río Blanco–Los Bronces (Chile) is one of the richest endowed porphyry copper-molybdenum districts worldwide, where about 20% of the known mineralization is hosted by tourmaline-cemented hydrothermal breccia.
This work seeks: (1) to find a relationship between tourmaline chemical and/or isotopic composition and the degree of mineralization in the breccia, (2) to constrain the source of the mineralizing fluid in the breccia, and (3) to determine of the composition and age of intrusive units in three new exploration projects and correlate them with the known intrusive rocks of the mine areas. Tourmaline from mineralized and barren breccias has similar boron isotopic compositions but differences in Mg/(Mg+Fe) ratios, Al-contents and Al-Fe correlation, which may have exploration value. Boron and sulfur isotopes results are consistent with a magmatic source of hydrothermal fluids. Results of whole rock geochemistry and U-Pb and 40Ar/39Ar geochronology of intrusive units, breccia and late-stage veins are combined with previous U-Pb, Ar/Ar and Re-Os ages to elucidate the magmatic and hydrothermal history of the district.:1 Introduction
1.1 Motivation of the study and statement of research questions
1.2 Scope of the study
2 Porphyry copper deposits (PCDs)
2.1 Introduction
2.1.1 Global copper inventory
2.1.2 Definition and classification of PCDs
2.2 Regional scale characteristics of PCDs
2.2.1 Tectonic setting
2.2.2 Space and time distribution
2.2.3 Porphyry stocks and their pluton and volcanic connections
2.2.4 Wall-rock Influence
2.3 Deposit-scale characteristics
2.3.1 Porphyry stocks and dikes
2.3.2 Hydrothermal breccia
2.3.3 Alteration-mineralization zoning
2.4 Processes of PCD formation
2.4.1 Arc magmatism
2.4.2 Magmatic volatiles
2.4.3 Genetic models
3 Regional setting of the study area
3.1 Tectono-magmatic setting
3.2 Metallogenic belts
4 Río Blanco – Los Bronces mining district
4.1 Mining history
4.2 District geology
4.2.1 Stratified rocks
4.2.2 Plutonic and hypabyssal intrusions
4.2.3 Structures
4.2.4 Alteration and mineralization
4.2.1 Geochronology database
5 Results
5.1 Plutonic units
5.1.1 Petrography
5.1.2 Whole rock (WR) geochemistry
5.1.3 Geochronology
5.2 Mineralization
5.2.1 Petrography
5.2.2 Tourmaline occurrence and composition
5.2.3 Sulfides and sulfates
6 Discussion
6.1 Time-space relationships of intrusion, brecciation and hydrothermal alteration
6.2 Stable isotope constraints on fluid source and evolution
6.2.1 Oxygen, hydrogen and sulfur isotopes
6.2.2 Boron isotopes
6.3 Tourmaline as a redox indicator and significance for exploration
7 Summary and conclusions
8 References
Digital supplement
Appendix (Methods)
9 Appendix Methods
9.1 Optical microscopy (OM)
9.2 Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS)
9.3 Whole rock chemical analysis
9.4 Electron microprobe analyses (EMPA)
9.5 Boron isotopes
9.6 Sulfur isotopes
9.7 40Ar/39Ar dating
9.8 Zircon separation and characterization
9.9 U-Pb zircon LA-ICP-MS dating
9.10 U-Pb zircon CA-ID-TIMS dating
9.11 Single zircon evaporation as screening method
|
30 |
The Per Geijer iron ore deposits: Characterization based on mineralogical, geochemical and process mineralogical methodsKrolop, Patrick 04 April 2022 (has links)
The Per Geijer iron oxide-apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB), which has been continuously mining magnetite/hematite ores in northern Sweden for almost 130 years. The Per Geijer deposits reveal a high phosphorus content and vary from magnetite-dominated to hematite-dominated ores, respectively. The high phosphorus concentration of these ores results from highly elevated content of apatite as gangue mineral. Reliable, robust, and qualitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. The precise mineralogical information obtained by optical microscopy, SEM-MLA and Raman improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. A comprehensive mineral-chemical dataset of magnetite, hematite and apatite obtained by electron microprobe analysis (EPMA) and LA-ICP-MS from representative drill core samples is presented. Magnetite, four different types of hematite and five types of apatite constitute the massive orebodies: Primary and pristine magnetite with moderate to high concentrations of Ti (∼61–2180 ppm), Ni (∼11–480 ppm), Co (∼5–300 ppm) and V (∼553–1831 ppm) indicate a magmatic origin for magnetite. The presence of fluorapatite and associated monazite inclusions and disseminated pyrite enclosed by magnetite with high Co:Ni ratios (> 10) in massive magnetite ores are consistent with a high temperature (∼ 800°C) genesis for the deposit. The different and abundant types of hematite, especially hematite type I, state subsequent hydrothermal events.
Chromium, Ni, Co and V in both magnetite and hematite have low concentrations in terms of current product regulations and thus no effect on final products in the future. In terms of a possible future hematite product, titanium seems to be the most critical trace element due to very high concentrations in hematite types I and IV, of which type I is most abundant in zones dominated by hematite. Further interest on other products is generated due to the high variability of hematite and apatite in some of these ores.
Information obtained from comminution test works in the laboratory scale can be utilized to characterize ore types and to predict the behavior of ore during comminution circuit in the industrial scale. Comminution tests with a laboratory rod and ball mill of 13 pre-defined ore types from the Per Geijer iron-oxide apatite deposits were conducted in this study. The highest P80 values were obtained by grinding in the rod mill for 10 minutes only (step A). Grinding steps B (25 min ball mill) and C (35 min ball mill) reveal very narrow P80 values. Ore types dominated by hematite have significantly higher P80 values after the primary grinding step (A), which indicates different hardness of the ore types. P80 values are generally lowest after the secondary grinding step C ranging between 26 µm (ore type M1a) and 80 µm (ore type H2a). Generally, Fe content increases in the finer particle size classes while CaO and P contents decrease. The influence of silica or phosphorus seems to be dependent on the dominant iron oxide. Magnetite-dominated ore types are more likely to be affected in their comminution behavior by the presence of the silicates. Contrary, hematite-dominant ore types are rather influenced by the presence of apatite. The difference in the degree of liberation of magnetite and hematite between ore types depends rather on size fractions than the amount of gangue in the ore. Davis tube data indicates that magnetite can be separated from gangue quite efficiently in the magnetite-dominated ore types. Contrary to magnetite ore, hematite-dominated ore types cannot be processed by DT. It is favored to use strong magnetic separation in order to achieve a desirable hematite concentrate. The magnetic material recovered by DT is most efficiently separated at an intensity current of 0.2 A, whereas above 0.5 A the separation process is neglectable. Based on comminution and magnetic separation tests a consolidation to eight ore types is favored which supports possible future mining of the Per Geijer deposits.:Contents
ABSTRACT ……………………………………………………………………… I
CONTENTS ……………………………………………………………………… II
LIST OF FIGURES AND TABLES ……………………………………………… IV
LIST OF ABBREVIATIONS ……………………………………………… V
1 INTRODUCTION ……………………………………………………… 1
1.1 Background and motivation of study ……………………………… 2
1.2 Previous and current work on the Per Geijer deposits ……………… 3
1.3 The need for mineral processing and in-situ ore description ……………… 4
1.4 General and generic aspects on iron oxide apatite deposits ……………… 5
Chapter A
2 REGIONAL GEOLOGY ………………………………………………. 7
2.1 Local geology of the Kiruna area ……………………………………… 7
2.2 Geology of the Per Geijer deposits ……………………………………… 9
3 METHODOLOGY ……………………………………………………… 12
3.1 Core sampling and preparation ……………………………………… 12
3.2 SEM – MLA in-situ ore ……………………………………………… 14
3.3 Electron Probe Microanalyses (EPMA) ……………………………… 15
3.3.1 Iron oxide measurements ……………………………………… 15
3.3.2 Apatite measurements ……………………………………… 15
3.4 In-situ LA-ICP-MS ……………………………………………………… 16
3.5 Whole-rock geochemistry ……………………………………………… 18
3.5.1 Exploration drill core assays ……………………………… 18
3.5.2 Chemical assays of rock chips ……………………………… 18
4 RESULTS ……………………………………………………………… 19
4.1 Pre-definition of ore types ………………………………...……………. 19
4.2 Mineralogy of in situ ore ……………………………………………… 21
4.2.1 Ore Type M1a ……………………………………………… 21
4.2.2 Ore Type M1b ……………………………………………… 22
4.2.3 Ore Type M2a ……………………………………………… 23
4.2.4 Ore Type M2b ……………………………………………… 25
4.2.5 Ore Type HM1b ……………………………………………… 26
4.2.6 Ore Type HM2a ……………………………………………… 27
4.2.7 Ore Type HM2b ……………………………………………… 28
4.2.8 Ore Type H1a ……………………………………………… 29
4.2.9 Ore Type H1b ……………………………………………… 30
4.2.10 Ore Type H2a ……………………………………………… 31
4.2.11 Ore Type H2b ……………………………………………… 32
4.2.12 Comparison of ore types ……………………………………… 33
4.3 Geochemistry of in situ ore types ……………………………… 36
4.3.1 Whole-rock chemical assays of drill cores ……………………… 36
4.3.2 Whole-rock geochemistry of rock chips ……………………… 39
4.4 Mineral chemistry of iron oxides ……………………………………… 42
4.4.1 Iron oxides and associated minerals ……………………………… 42
4.4.2 Mineral chemistry of magnetite from Per Geijer ……………… 43
4.4.3 Mineral chemistry of hematite from Per Geijer ……………… 47
4.5 Mineral chemistry of apatite ……………………………………… 51
4.5.1 Apatite and associated minerals ……………………………… 51
4.5.2 Mineral chemistry of apatite from Per Geijer ……………… 53
Chapter B
5 COMMINUTION TESTS ……………………………………………… 58
5.1 Methodology of comminution tests ……………………………………… 59
5.1.1 Sampling for comminution tests ……………………………… 59
5.1.2 Comminution circuit ……………………………………………… 61
5.1.3 Energy consumption calculation ……………………………… 62
5.1.4 SEM – MLA ……………………………………………………… 64
6 MAGNETIC SEPARATION TESTS ……………………………… 65
6.1 Methodology of magnetic separation by Davis magnetic tube ……… 66
6.2 Davis magnetic tube tests for characterization of the Per Geijer ore types 66
6.3 Separation analysis based on the Henry-Reinhard charts .……………... 67
7 RESULTS OF COMMINUTION OF ORE TYPES ……………………… 69
7.1 General characteristics of magnetite-dominated ore types ……………… 69
7.2 General characteristics of hematite-dominated ore types ……………… 72
7.3 General characteristics of magnetite/hematite-mixed ore types ……… 75
7.4 General characteristics of low-grade ore types ……………………… 77
7.5 Mineral liberation characteristics of magnetite-dominated ore types 79
7.6 Mineral liberation characteristics of hematite-dominated ore types 83
7.7 Mineral liberation characteristics of magnetite/hematite-mixed ore types 87
7.8 Mineral liberation characteristics of low-grade ore types ……………… 90
7.9 Total energy consumption of ore types from the Per Geijer deposits 94
8 RESULTS OF MAGNETIC SEPARATION OF ORE TYPES ……… 95
8.1 Magnetic separation of magnetite-dominated ore types ……………… 95
8.2 Magnetic separation of hematite-dominated ore types ……………… 96
8.3 Magnetic separation of magnetite/hematite-mixed ore types ……………… 97
8.4 Magnetic separation of low-grade ore types ……………………………… 98
8.5 Henry-Reinhard charts ……………………………………………… 99
9 DISCUSSION ……………………………………………………… 101
9.1 Mineralogy of the in-situ ore types from the Per Geijer deposits ……… 101
9.2 Geochemistry of the in-situ ore types from the Per Geijer deposits ……… 103
9.3 Mineral chemistry of iron oxides from the Per Geijer deposits ……… 105
9.4 Mineral chemistry of apatite from the Per Geijer deposits ……………… 114
9.5 Comminution of ore types from Per Geijer ……………………… 119
9.6 Magnetic separation of ore types from Per Geijer ……………………… 120
9.7 Issues with process mineralogy of in-situ and grinded ore types ……… 121
10 CONCLUSIONS ……………………………………………………… 128
11 IMPLICATIONS FOR FUTURE WORK ……………………………… 131
12 REFERENCES ……………………………………………………………… 134
|
Page generated in 0.0564 seconds