• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 15
  • 15
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploring female preference for male melanic pigmentation patterns in the Malawian cichlid <i>Metriaclima zebra</i>

Medina García, Angela L. 08 November 2011 (has links)
No description available.
12

Phytoplankton dynamics in nearshore and offshore regions of the Great Lakes Erie, Malawi, Tanganyika, and Victoria

North, Rebecca + "Lee" January 2008 (has links)
My doctoral thesis challenges the traditional paradigm of phosphorus (P) limitation of phytoplankton communities in freshwaters by suggesting colimitation of P, nitrogen (N), and iron (Fe) in Great Lakes. Oceanographers have recognized Fe, N and P colimitation, and biomass response to Fe is documented in freshwater lakes. I studied African and North American Great Lakes that are similar to large inland oceans. I discovered that Fe is a key nutrient that is often limiting in the offshore, and may explain the dominance of cyanobacteria in nutrient enriched lakes. I also discovered that the nearshore and offshore areas of these large lakes are very different, particularly when invasive dreissenid mussels are impacting the nearshore, as seen in the eastern basin of Lake Erie. As a result of the dreissenids, chlorophyll a (chla) concentrations are significantly lower in the nearshore of Lake Erie, but higher in the nearshore in the three African Great Lakes, as well as pre-dreissenid Lake Erie. The objective of my thesis was to determine the limiting nutrient(s) to the phytoplankton of the Great Lakes Erie, Malawi, Tanganyika, and Victoria in both the nearshore and offshore by measuring the physiological status of the phytoplankton. I also examined how dreissenids affect the distribution of seston and nutrient concentrations between the nearshore and offshore of the eastern basin of Lake Erie. My study design included temporal and spatial surveys in the nearshore and offshore of the four lakes, in which I used a variety of nutrient limitation indicators for P (C:P, N:P, P debt, APA, Fv/Fm), N (C:N, NH4 debt, NO3 debt, Fv/Fm), and Fe (Fv/Fm), as well as photosynthetic efficiency (Fv/Fm) experiments. Nutrient enrichment experiments were also conducted in the nearshore and offshore of the eastern basin of Lake Erie which involved the addition and removal of Fe alone, as well as in combination with P and/or N. Lake Erie nutrient enrichment experiments provided evidence for P, N and Fe colimitation where the addition of Fe with P relieved Fe and P limitation and allowed nitrate (NO3-) assimilation, alleviating N limitation. However, the offshore experiments indicated stronger Fe limitation than the nearshore experiment. Lower chla concentrations in the post-dreissenid nearshore of the eastern basin of Lake Erie may not be due entirely to lower phytoplankton biomass, as photoacclimation of the phytoplankton may also be occurring. Dreissenid grazing effects can be seen in the distribution of dissolved nutrient concentrations between the nearshore and offshore of post-dreissenid Erie. The African Great Lakes are threatened by expanding human populations, resulting in increased nutrient runoff; the consequences of which will depend on the limiting nutrient(s). I found that the nearshore regions of Lakes Malawi and Tanganyika were colimited by N and P, while the offshore regions were colimited by N, P and Fe. The nearshore of Lake Victoria was colimited by light and N, while the offshore was colimited by N, P and Fe. Fe limitation only occurs in the offshore, and positive, significant relationships were found between total dissolved Fe concentrations and cyanobacteria. Continued P and Fe loading to the lakes will create a higher N demand that will result in a shift to N2-fixing cyanobacteria, which has serious consequences to human and ecosystem health as they are a poor nutritive food source and some are potentially toxigenic. The majority of studies conducted on Great Lakes involve offshore sampling, however, the less understood nearshore is where human impacts and activities are concentrated. I discovered there are significant differences between the nearshore and offshore, which has implications for water quality monitoring.
13

Phytoplankton dynamics in nearshore and offshore regions of the Great Lakes Erie, Malawi, Tanganyika, and Victoria

North, Rebecca + "Lee" January 2008 (has links)
My doctoral thesis challenges the traditional paradigm of phosphorus (P) limitation of phytoplankton communities in freshwaters by suggesting colimitation of P, nitrogen (N), and iron (Fe) in Great Lakes. Oceanographers have recognized Fe, N and P colimitation, and biomass response to Fe is documented in freshwater lakes. I studied African and North American Great Lakes that are similar to large inland oceans. I discovered that Fe is a key nutrient that is often limiting in the offshore, and may explain the dominance of cyanobacteria in nutrient enriched lakes. I also discovered that the nearshore and offshore areas of these large lakes are very different, particularly when invasive dreissenid mussels are impacting the nearshore, as seen in the eastern basin of Lake Erie. As a result of the dreissenids, chlorophyll a (chla) concentrations are significantly lower in the nearshore of Lake Erie, but higher in the nearshore in the three African Great Lakes, as well as pre-dreissenid Lake Erie. The objective of my thesis was to determine the limiting nutrient(s) to the phytoplankton of the Great Lakes Erie, Malawi, Tanganyika, and Victoria in both the nearshore and offshore by measuring the physiological status of the phytoplankton. I also examined how dreissenids affect the distribution of seston and nutrient concentrations between the nearshore and offshore of the eastern basin of Lake Erie. My study design included temporal and spatial surveys in the nearshore and offshore of the four lakes, in which I used a variety of nutrient limitation indicators for P (C:P, N:P, P debt, APA, Fv/Fm), N (C:N, NH4 debt, NO3 debt, Fv/Fm), and Fe (Fv/Fm), as well as photosynthetic efficiency (Fv/Fm) experiments. Nutrient enrichment experiments were also conducted in the nearshore and offshore of the eastern basin of Lake Erie which involved the addition and removal of Fe alone, as well as in combination with P and/or N. Lake Erie nutrient enrichment experiments provided evidence for P, N and Fe colimitation where the addition of Fe with P relieved Fe and P limitation and allowed nitrate (NO3-) assimilation, alleviating N limitation. However, the offshore experiments indicated stronger Fe limitation than the nearshore experiment. Lower chla concentrations in the post-dreissenid nearshore of the eastern basin of Lake Erie may not be due entirely to lower phytoplankton biomass, as photoacclimation of the phytoplankton may also be occurring. Dreissenid grazing effects can be seen in the distribution of dissolved nutrient concentrations between the nearshore and offshore of post-dreissenid Erie. The African Great Lakes are threatened by expanding human populations, resulting in increased nutrient runoff; the consequences of which will depend on the limiting nutrient(s). I found that the nearshore regions of Lakes Malawi and Tanganyika were colimited by N and P, while the offshore regions were colimited by N, P and Fe. The nearshore of Lake Victoria was colimited by light and N, while the offshore was colimited by N, P and Fe. Fe limitation only occurs in the offshore, and positive, significant relationships were found between total dissolved Fe concentrations and cyanobacteria. Continued P and Fe loading to the lakes will create a higher N demand that will result in a shift to N2-fixing cyanobacteria, which has serious consequences to human and ecosystem health as they are a poor nutritive food source and some are potentially toxigenic. The majority of studies conducted on Great Lakes involve offshore sampling, however, the less understood nearshore is where human impacts and activities are concentrated. I discovered there are significant differences between the nearshore and offshore, which has implications for water quality monitoring.
14

Crustal stress changes induced by seasonal hydrological load variations in correlation with seismicity rate changes in the Malawi Rift System

Carr, Steve Asamoah Boamah 15 September 2021 (has links)
No description available.
15

Characterizing Deformation Along an Early-Stage Rift: GPS Observations from the Northern Lake Malawi (Nyasa) Rift

Grant Bonnette (8817314) 11 May 2020 (has links)
The Malawi (Nyasa) Rift is a prominent example of immature rifting located along the southern East African Rift System. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project installed a new network of 12 continuous GPS sites in Malawi, Tanzania, and Zambia. Using this new data along with data from other existing sites in the region, I examine the present-day deformation along the Malawi Rift and surrounding areas. The GPS data is used to constrain a tectonic block model of the Malawi Rift in order to produce estimates of angular velocities of the blocks, which are then used to derive fault slip rates and linear block velocities. The new data around the Malawi Rift suggests an additional block may be required to explain the observed deformation. My preferred model predicts that extension rates in the area are slower than previous studies suggested (3.8 ± 0.7 mm/yr; Stamps et al., 2008) with a cumulative rate 2.35 ± 0.65 mm/yr in the northern Malawi Rift and 1.26 ± 0.85 mm/yr along the southern Malawi Rift.

Page generated in 0.0326 seconds