• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 36
  • 9
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 33
  • 31
  • 28
  • 24
  • 20
  • 19
  • 16
  • 15
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Trypanosoma cruzi e a interação com a matriz extracelular: modelagem da proteína Tc85-11 e determinação do sítio de ligação a laminina / Trypanosoma cruzi interaction with the extra-cellular matrix: modeling the TC85-11 protein and mapping the laminin-binding site

Miryam Marroquin Quelopana 16 December 2003 (has links)
Trypanosoma cruzi expressa um grupo de glicoproteínas de superfície, as Tc85, que pertencem à superfamília gênica das gp85/trans-sialidases. Neste trabalho mostramos um modelo de estrutura para um membro desta família, a proteína Tc85-11, a qual tem propriedades adesivas para laminina e para a superfície da célula. Esta estrutura consiste em um domínio N-terminal com pregamento ß-propeller e um domínio C-terminal ß-sandwich conectados por uma um α-hélice longa. A proteína recombinante que corresponde ao domínio amino terminal (Tc85-N), mas não ao domínio carboxi-terminal (Tc85-C), liga-se a laminina de uma maneira específica. Cinco peptídeos sintéticos, contidos no domínio N-terminal, aderem na superfície das células LLC-MK2 e inibem a infecção pelo T. cruzi. Dois destes peptídeos também podem inibir a interação Tc85-N - laminina de modo específico e poderiam representar o sítio de ligação a laminina. Estes resultados reforçam a hipótese que a Tc85-11 é uma proteína multi-adesiva, já que o domínio C-terminal, liga-se a citoqueratina-18. Por outro lado, o tratamento de células em cultura com Tc85-N aumenta a expressão de laminina, efeito já observado in vivo e quando culturas de células foram incubadas com antígenos liberados pelo parasita. A Tc85-11 pode ter, por tanto, um papel relevante na interação do parasita com o hospedeiro modulando ainda a expressão de componentes da matriz extracelular. / Trypanosoma cruzi expresses the Tc85 proteins, a set of surface glycoproteins belonging to the gp85/trans-sialidase supergene family. In this report we show a structure model for Tc85-11 a member of this family, which has adhesive properties to laminin and to the host cell surfaces. That structure consists in an N-terminus β-propeller and a C-terminus β-sandwich domains connected by a long α-helix. The recombinant protein corresponding to the N-domain (Tc85-N), but not to the C-domain (Tc85-C), was able to bind laminin in a specific manner. Five synthetic 20-mer peptides from the N-domain adhere onto LLC-MK2 cell surface and inhibit the T. cruzi infection. Two of these peptides can also inhibit specifically Tc85-N - laminin interaction and may represent the laminin-binding site. These results reinforce the hypothesis that the Tc85-11 protein is a multi-adhesive protein, since it also binds to citokeratin-18 by C-terminus domain. On the other hand, the treatment of host cells with Tc85-N increases the expression of laminin in the cell culture, as was previously reported for treatment with T. cruzi released antigens. In summary, Tc85-11 protein may play an important role in the host-parasite interaction, including the modulation of ECM expression.
62

Differentiation of extraembryonic endoderm stem cell lines and parietal endoderm into visceral endoderm : the art of XEN cells

Paca, Agnieszka Maria January 2012 (has links)
The extraembryonic endoderm of mammals is essential for nutritive support of the foetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimaeras. Here, I further characterise XEN cells and show that these cell lines exhibit high levels of heterogeneity. In an effort for XEN cells to adopt visceral endoderm character different aspects of the in vivo environment were mimicked. I found that BMP4 and laminin promote a mesenchymal-to-epithelial transition of XEN cells with upregulation of epithelial markers and downregulation of mesenchymal markers. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm. Correspondingly, inhibition of Erk and BMP signalling drives XEN cells toward parietal endoderm fate. Finally, I show that BMP4 treatment of freshly isolated parietal endoderm from Reichert’s membrane promotes its visceral endoderm differentiation. This suggests that parietal endoderm is still developmentally plastic and can be transdifferentiated to a visceral endoderm in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.
63

Endothelial differentiation and angiogenesis regulation

Dixelius, Johan January 2002 (has links)
<p>Angiogenesis can be defined as the formation of new blood vessels from pre-existing ones. Angiogenesis is required for development and maintenance of our vascular system and thus of fundamental importance to our existence. The endothelial cells that line the inside of the vessels de-differentiate, migrate, proliferate and re-differentiate during angiogenesis. Angiogenesis is tightly regulated, controlled by several angiogenic factors of various classes that promote angiogenesis but also by anti-angiogenic factors that counteract the effect of the pro-angiogenic factors. We have examined three factors involved in angiogenesis regulation, Vascular endotelial growth factor (VEGFR) -3, the matrix protein laminin-1 and the collagen XVIII derived fragment endostatin. </p><p>Five tyrosine phosphorylation sites in the cytoplasmic tail of VEGFR-3 were identified by phosphopeptide mapping (PPM). The data was confirmed by PPM using point-mutated receptors generated by site-directed mutagenesis.</p><p>Laminin-1 was found to promote angiogenesis in the chicken chorioallantoic membrane assay and in a synergistic fashion together with suboptimal levels of fibroblast growth factor 2 (FGF-2) in embryoid bodies. Laminin-1 also promoted endothelial tubular morphogenesis in vitro, and upregulated the expression of the endothelial differentiation marker Jagged-1. </p><p>Endostatin was shown to affect endothelial FGF-2-induced cell survival and morphogenesis. This was a result of direct binding to endothelial cells and induction of tyrosine phosphorylation of many proteins including the adaptor protein Shb. The apoptotic and morphogenic responses induced by endostatin was shown to be dependent on Shb. Further, endostatin inhibited endothelial migration and affected molecules implicated in migration. In particular, FGF-2 induced actin reorganization, and β-catenin regulation was modulated by endostatin. </p>
64

Endothelial differentiation and angiogenesis regulation

Dixelius, Johan January 2002 (has links)
Angiogenesis can be defined as the formation of new blood vessels from pre-existing ones. Angiogenesis is required for development and maintenance of our vascular system and thus of fundamental importance to our existence. The endothelial cells that line the inside of the vessels de-differentiate, migrate, proliferate and re-differentiate during angiogenesis. Angiogenesis is tightly regulated, controlled by several angiogenic factors of various classes that promote angiogenesis but also by anti-angiogenic factors that counteract the effect of the pro-angiogenic factors. We have examined three factors involved in angiogenesis regulation, Vascular endotelial growth factor (VEGFR) -3, the matrix protein laminin-1 and the collagen XVIII derived fragment endostatin. Five tyrosine phosphorylation sites in the cytoplasmic tail of VEGFR-3 were identified by phosphopeptide mapping (PPM). The data was confirmed by PPM using point-mutated receptors generated by site-directed mutagenesis. Laminin-1 was found to promote angiogenesis in the chicken chorioallantoic membrane assay and in a synergistic fashion together with suboptimal levels of fibroblast growth factor 2 (FGF-2) in embryoid bodies. Laminin-1 also promoted endothelial tubular morphogenesis in vitro, and upregulated the expression of the endothelial differentiation marker Jagged-1. Endostatin was shown to affect endothelial FGF-2-induced cell survival and morphogenesis. This was a result of direct binding to endothelial cells and induction of tyrosine phosphorylation of many proteins including the adaptor protein Shb. The apoptotic and morphogenic responses induced by endostatin was shown to be dependent on Shb. Further, endostatin inhibited endothelial migration and affected molecules implicated in migration. In particular, FGF-2 induced actin reorganization, and β-catenin regulation was modulated by endostatin.
65

The Effects of Extracellular Matrix Mechanics and Composition on the Behaviors of Nucleus Pulposus Cells from the Intervertebral Disc

Gilchrist, Christopher Lee January 2009 (has links)
<p>Intervertebral disc (IVD) disorders are a major contributor to disability and health costs. Disc disorders and resulting pain may be preceded by changes which first occur in the nucleus pulposus (NP) region of the IVD, where significant alterations in tissue cellularity, composition, and structure begin early in human life and continue with increasing age and degeneration. These changes coincide with the loss of a distinct cell population, notochordally-derived immature NP cells, which may play a key role in the generation and maintenance of this tissue. These cells reside in a gelatinous, highly-hydrated extracellular matrix (ECM) environment and exhibit in situ cell-matrix and cell-cell interactions which are quite distinct from cells in other regions of the disc or in other cartilagenous, including expression of laminin cell-matrix receptors and cell-associated laminin proteins. The ECM environment is known to be a key regulator of cellular behaviors, with ECM ligands and elasticity modulating cell adhesion, organization, differentiation, and phenotype. The primary motivating hypothesis of this thesis is that the unique ECM environment of the NP plays a key role in modulating immature NP cell behaviors, and that laminin ligands, in combination with ECM elasticity, modulate immature NP cell behaviors including adhesion, organization, and phenotype.</p><p>To investigate this hypothesis, flow cytometric analyses were performed to examine IVD cell integrin receptor expression over time in culture, including assessment of key laminin-binding integrin subunits. The roles of specific integrin receptors modulating NP cell adhesion to ECM proteins were identified in studies utilizing function-blocking antibodies. NP cell adhesion, spreading, and relative cell adhesion strength was assessed on various ECM constituents, including specific isoforms of laminin. Additionally, studies were performed to examine the roles of ECM ligand and substrate stiffness in modulating NP cellular organization, utilizing polyacrylamide gel substrates with tunable mechanical properties and functionalized with different ECM ligands. Finally, the role of ECM environment was examined on one key measure of NP cell function, proteoglycan production, over time in culture.</p><p>NP cells isolated from immature NP tissues were found to express high levels of the laminin-binding integrin subunit alpha 6 ex situ and maintain this expression over time in culture. Function blocking studies revealed this receptor to be a key regulator of NP cell adhesion to laminin, in contrast to cells from the adjacent AF region, which did not express this receptor nor adhere to laminin. Cell adhesion studies demonstrated that NP cells preferentially interact with two laminin isoforms, LM-511 and LM-332, in comparison to other ECM proteins, with enhanced cell attachment, spreading, and adhesion strength on surfaces coated with these ligands. These findings correspond with laminin isoform and receptor expression patterns identified in immature NP tissues. Additionally, NP cell-cell interactions were found to be modulated by both ECM ligand and substrate stiffness, with soft, laminin-functionalized substrates promoting self-assembly of NP cells into cell clusters with morphologies similar to those identified in immature NP tissues. Finally, culture of immature NP cells on soft, laminin-rich substrates was found to promote a key measure of NP cell function, proteoglycan synthesis.</p><p>The studies presented here demonstrate that immature NP cells interact uniquely with laminin extracellular matrix proteins, and that laminin ligands and matrix elasticity are two key regulators of NP cell organization and phenotype in the IVD. These findings suggest that alterations in one or both of these factors during IVD aging or degeneration may contribute to the differentiation or loss of this unique cell population. Additionally, these results indicate that soft, laminin-functionalized biomaterials may be appropriate for in vitro culture and expansion of immature NP cells, as well as for use in NP tissue engineering strategies.</p> / Dissertation
66

Regulation of Human Nucleus Pulposus Cell Phenotype and Behavior by Laminin-Mimetic Peptide Substrates

Bridgen, Devin January 2015 (has links)
<p>Intervertebral disc (IVD) disorders can cause pain and disability for affected individuals. A subset of IVD disorders are thought to originate in the nucleus pulposus (NP) region of the IVD, due to alterations in tissue structure and composition with age and injury. Cells of the NP undergo a phenotypic and behavioral shift with age, changes that are thought to disrupt tissue homeostasis and lead to disc degeneration. There is significant interest in developing biomaterials and strategies to revert adult degenerate NP cells to healthy, young NP cell phenotypes with increased biosynthesis and cell clustering. Studies demonstrate that healthy porcine NP cells interact with laminin proteins through specific integrin subunits on soft substrates in a process that regulates cell morphology and biosynthesis. The central hypothesis of this dissertation is that the engagement of cell-surface adhesion receptors, using laminin-mimetic peptides on a controlled stiffness material, can revert adult degenerate NP cellular phenotype and behaviors to their healthy, biosynthetically active form.</p><p>In the first part of this dissertation, integrin subunits used by adult degenerate human NP cells to attach to laminin were revealed using flow cytometric analyses, function blocking antibodies, and immunohistochemistry. Secondly, NP cell recognition peptides were identified by screening laminin-mimetic peptides for cell attachment. Finally, human NP cells were cultured on peptide functionalized polyacrylamide gels to examine the effect of ligand and substrate stiffness in regulating adult human NP cell phenotype and biosynthesis. </p><p>Findings reveal that adult human NP cells express and utilize integrin subunits α3, α5, and β1 to attach to laminins, in contrast to integrin α6β1 found previously for healthy porcine NP cells. This difference between current and previous findings likely arises from aging-associated difference in NP cells between human and porcine tissues. Select laminin-mimetic peptides, chosen from the literature and informed by NP cell integrin expression, were found to promote significant NP cell attachment in a concentration dependent manner. Finally, a subset of laminin mimetic peptides were found to promote a young NP cell phenotype by increasing cell clustering on soft (0.3 kPa) and stiff (14 kPa) substrates as well as increasing proteoglycan synthesis on soft substrates. </p><p>The studies presented in this dissertation demonstrate that adult degenerate human NP cells attach to laminin proteins in an integrin dependent manner. Furthermore, laminin-mimetic peptides are able to mediate human NP cell attachment at levels comparable to full-length laminin, increase cell clustering when presented on soft and stiff substrates, and can increase NP cell biosynthesis when presented on soft substrates. Utilizing laminin-mimetic peptides may allow for the design of biomaterials that promote a healthy young NP phenotype for a variety of disc therapies.</p> / Dissertation
67

Human extraocular muscles : molecular diversity of a unique muscle allotype

Kjellgren, Daniel January 2004 (has links)
Introduction: The extraocular muscles (EOMs) are considered a separate class of skeletal muscle, allotype. Myosin is the major contractile protein in muscle. The myosin heavy chain (MyHC) isoforms are the best molecular markers of functional heterogeneity of muscle fibers. The relaxation rate, reflects the rate at which Ca2+ is transported back into the sarcoplasmic reticulum (SR) mostly by SR Ca2+ATPase (SERCA). Myosin binding protein C (MyBP-C), plays a physiological role in regulating contraction. The laminins (Ln) are the major non-collagenous components of the basement membrane (BM) surrounding muscle fibers and are important for muscle fiber integrity. Methods: Adult human EOMs were studied with SDS-PAGE, immunoblots and immunocytochemistry, the latter with antibodies against six MyHC, 2 SERCA, 2 MyBP-C and 8 laminin chain isoforms. The capillary density was also determined. Results: Most fibers contained a mixture of MyHC isoforms. Three major groups of fibers could be distinguished. Fast fibers that stained with anti-MyHCIIa, slow fibers that stained with anti-MyHCI and MyHCeompos/MyHCIIaneg-fibers that stained with neither of these antibodies but with anti-MyHCI+IIa+eom and anti-MyHCeom. A majority of the fibers contained both SERCA1 and 2 whereas 1% were unstained with both antibodies. Biochemically SERCA2 was more abundant than SERCA1. MyBP-Cfast was not present in the EOMs and MyBP-Cslow was only detected immunocytochemically. The extrasynaptical BM of the EOM muscle fibers contained Lna2, b1, b2, g1, a4 and a5 chains. The capillary density in the EOMs was very high (1050 +/-190 capillaries/mm2) and significantly (p&lt;0.05) higher in the orbital than in the global layer. Conclusions: The co-existence of complex mixtures of several crucial protein isoforms provide the human EOMs with a unique molecular portfolio that a) allows a highly specific fine-tuning regime of contraction and relaxation, and b) imparts structural properties that are likely to contribute to protection against certain neuromuscular diseases.
68

Characterization of Epitheliogenesis Imperfecta in Equus caballus

Lieto, Louis D 01 January 2001 (has links)
Epitheliogenesis Imperfecta (EI) is a mechanobullous disease that occurs in newborn American Saddlebred and Belgian Draft foals. Necropsy evaluations of two American Saddlebred foals revealed broad skin lesions, dental abnormalities and oral mucosa lesions. Construction of a partial pedigree showing occurrences of EI in American Saddlebred horses was consistent with a recessive pattern of inheritance. An allelic frequency of 0.04 was estimated for the EI gene. The pathological signs of EI were similar to a disease in humans known as Herlitz Junctional Epidermolysis Bullosa (HJEB). HJEB is caused by a defect in one of the three subunits of the laminin 5 protein (LAM 3, LAM 3 and LAM 2), which leads to a separation of the epidermis from the dermis. Transmission electron microscopy revealed a separation within the lamina lucida at the sites of epidermal/dermal splits in the skin of EI affected foals. This indicated that a defect in the laminin 5 protein was responsible for EI. Linkage disequilibrium (LD) between microsatellite markers and the EI disease locus was tested for in the American Saddlebred and Belgian Draft breeds. Genotyping of microsatellite alleles was used to determine fit to Hardy-Weinberg equilibrium for control and EI populations for both breeds using Chi square analysis. Two microsatellite loci (ASB14 and AHT3) were not in Hardy-Weinberg equilibrium in EI affected American Saddlebred horses. This suggested that the EI disease locus was located on ECA 8, the putative location of LAM 3. No evidence of LD between any of the tested microsatellite loci and the EI locus was observed in the Belgian Draft samples. A cDNA library was built from Thoroughbred horse skin to serve as a resource for sequencing equine skin gene transcripts. 313 ESTs were sequenced, of which 207 were putatively identified (66%) by database search. Examination of the pathology and ultrastructure of EI affected foals and comparison with HJEB indicated that laminin 5 was the responsible defective protein. The LD analysis suggested that LAM 3 was the EI disease locus in American Saddlebred horses.
69

Molecular markers and new techniques in the evaluation of colorectal cancer /

Lenander, Claes, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
70

Molecular markers reflecting malignant transformation and tumor progression /

Stoltzfus, Patricia, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.

Page generated in 0.0624 seconds