• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese, caracterização, estudos espectroscópicos e termoanalíticos de compostos de adição de trifluorometanossulfonatos de lantanídeos(III) com o ligante ε-caprolactama / Synthesis, characterization, spectroscopic and Thermoanalytical studies compounds trifluoromethanesulfonates addition of lanthanide (III) with the linker -caprolactam

Alvarez, Hubert Augusto Alvarez 21 August 1998 (has links)
Nesta tese são descritas as preparações e caraterizações dos compostos de trifluorometanossulfonatos de Ln(III) com o ligante ε-caprolactama. Os compostos apresentaram a seguinte estequiometria: a) Ln(C6H11NO)8 (CF3SO3)3: Ln= La, Ce ,Pr, Nd, Sm, Eu. b) Ln(C6H11NO)7 (CF3SO3)3: Ln= Gd, Tb, Dy, Yb, Lu. Medidas de condutividade em acetonitrila indicaram a existência de eletrólitos 1:1, atribuídos a formação de pares iônicos. A coordenação do ligante ε-caprolactama com o metal central ocorre através do oxigênio do grupo carbonila, fato que foi interpretado pelo deslocamento da νCO para regiões de menor energia, comparada com a banda do ligante livre. Os modos vibracionais do ânion CF3SO3-, os estiramentos νasSO3, νsSO3 e a deformação δsSO3 não se desdobram, exceto δasSO3, sugerindo-nos que estes não estão coordenados aos Ln(III). Este aspecto foi confirmado no caso da estrutura do monocristal do Pr(III), obtida por raios-X pelo método do monocristal. Verificou-se também a existência de seis tipos de estruturas cristalinas através de difratogramas de raios-X pelo método do pó. Os espectros de absorção na região do visível do composto de Nd(III) no estado sólido, nos sugerem um envolvimento não cúbico em torno do íon metálico e que a ligação é de caráter iônico. O espectro de emissão do Eu(III) nos sugere que a microsimetria ao redor do Eu(III) corresponde a D2d distorcida para C2v e a intensidade do parâmetro de intensidade Ω(λ=2), obtida experimentalmente para o complexo de Eu(III) e os compostos de lantanídeos(III):La, Ce, Gd, Y e Lu, dopados com Eu(III), nos sugerem a influência do acoplamento dinâmico na transição eletrônica 5D0 → 7F2 do Eu(III), que obedece à regra de seleção ΔJ=2. Também observa-se a inexistência do efeito antena no espectro de excitação do Eu(III). O estudo térmico, por curvas TG e DTG para os compostos de adição, nos mostram a formação dos resíduos LnF3 e LnOF à temperatura aproximada de 900°C. Determinaram-se os parâmetros cinéticos, tanto teoricamente como experimentalmente, da perda de moléculas de água correspondente à primeira etapa da desidratação dos sais de trifluorometanossulfonatos de lantanideos(III) eneaidratados, sob condições isotérmicas. Estes resultados foram obtidos a partir de modelos matemáticos existentes na literatura e com uma expressão matemática que foi derivada neste trabalho. / The preparation and characterization of compounds of trifluoromethanessulfonates with ε-caprolactam are described in this thesis. The compounds presented the following stoichiometries : a) Ln(C6H11NO)8 (CF3SO3)3: Ln= La, Ce ,Pr, Nd, Sm, Eu. b) Ln(C6H11NO)7 (CF3SO3)3: Ln= Gd, Tb, Oy, Yb, Lu. The coordination of the ε-caprolactam with the central metal ions occurs through the carbonyl oxygen. This fact was interpreted by the shift of νCO to lower frequencies in relation to the free ligand. The vibrational modes νasSO3, νsSO3 and deformation δsO3, except for δasSO3, are not splitted, suggesting that the CF3SO3- anions are not coordinated. This aspect was further confirmed in the structure of the Pr(III) compound obtained by x-ray crystallography. The existence of six types of crystalline structures was verified by x-ray powder patterns. The absorption visible spectrum of the Nd(III) compound in the solid state, suggest both the existence of a non-cubic site around the central ion and the ionic character of the bonds. The emission spectrum of Eu(III), suggest that the symmetry is D2d distorted towards C2v The experimental intensity parameter Ω2 obtained for the Eu(III) complex and the compounds of lanthanides(III): La, Ce, Gd, Y and Lu dopped with Eu(III) suggests the influence of the mechanic dynamic coupling in the electronic transition 5Do → 7F2 that obey the selection rule ΔJ=2. The excitation spectrum of Eu(III) compound indicate the inexistence of the antenna effect. The TG and DTG curves of the addition compounds show their thermic behaviour the formation of LnF3 and LnOF as residues at temperatures of 900°C could be identified. The kinetic parameters of the water loss corresponding to the first stage of the dehydration of the lanthanide(III) trifluomethanesulfonate eneahydrated under isotermic conditions were determined both theoretically and experimentally. These results were obtained from mathematical model offered in the literature and a mathematical expression is derived in this work.
2

Síntese, caracterização, estudos espectroscópicos e termoanalíticos de compostos de adição de trifluorometanossulfonatos de lantanídeos(III) com o ligante ε-caprolactama / Synthesis, characterization, spectroscopic and Thermoanalytical studies compounds trifluoromethanesulfonates addition of lanthanide (III) with the linker -caprolactam

Hubert Augusto Alvarez Alvarez 21 August 1998 (has links)
Nesta tese são descritas as preparações e caraterizações dos compostos de trifluorometanossulfonatos de Ln(III) com o ligante ε-caprolactama. Os compostos apresentaram a seguinte estequiometria: a) Ln(C6H11NO)8 (CF3SO3)3: Ln= La, Ce ,Pr, Nd, Sm, Eu. b) Ln(C6H11NO)7 (CF3SO3)3: Ln= Gd, Tb, Dy, Yb, Lu. Medidas de condutividade em acetonitrila indicaram a existência de eletrólitos 1:1, atribuídos a formação de pares iônicos. A coordenação do ligante ε-caprolactama com o metal central ocorre através do oxigênio do grupo carbonila, fato que foi interpretado pelo deslocamento da νCO para regiões de menor energia, comparada com a banda do ligante livre. Os modos vibracionais do ânion CF3SO3-, os estiramentos νasSO3, νsSO3 e a deformação δsSO3 não se desdobram, exceto δasSO3, sugerindo-nos que estes não estão coordenados aos Ln(III). Este aspecto foi confirmado no caso da estrutura do monocristal do Pr(III), obtida por raios-X pelo método do monocristal. Verificou-se também a existência de seis tipos de estruturas cristalinas através de difratogramas de raios-X pelo método do pó. Os espectros de absorção na região do visível do composto de Nd(III) no estado sólido, nos sugerem um envolvimento não cúbico em torno do íon metálico e que a ligação é de caráter iônico. O espectro de emissão do Eu(III) nos sugere que a microsimetria ao redor do Eu(III) corresponde a D2d distorcida para C2v e a intensidade do parâmetro de intensidade Ω(λ=2), obtida experimentalmente para o complexo de Eu(III) e os compostos de lantanídeos(III):La, Ce, Gd, Y e Lu, dopados com Eu(III), nos sugerem a influência do acoplamento dinâmico na transição eletrônica 5D0 → 7F2 do Eu(III), que obedece à regra de seleção ΔJ=2. Também observa-se a inexistência do efeito antena no espectro de excitação do Eu(III). O estudo térmico, por curvas TG e DTG para os compostos de adição, nos mostram a formação dos resíduos LnF3 e LnOF à temperatura aproximada de 900°C. Determinaram-se os parâmetros cinéticos, tanto teoricamente como experimentalmente, da perda de moléculas de água correspondente à primeira etapa da desidratação dos sais de trifluorometanossulfonatos de lantanideos(III) eneaidratados, sob condições isotérmicas. Estes resultados foram obtidos a partir de modelos matemáticos existentes na literatura e com uma expressão matemática que foi derivada neste trabalho. / The preparation and characterization of compounds of trifluoromethanessulfonates with ε-caprolactam are described in this thesis. The compounds presented the following stoichiometries : a) Ln(C6H11NO)8 (CF3SO3)3: Ln= La, Ce ,Pr, Nd, Sm, Eu. b) Ln(C6H11NO)7 (CF3SO3)3: Ln= Gd, Tb, Oy, Yb, Lu. The coordination of the ε-caprolactam with the central metal ions occurs through the carbonyl oxygen. This fact was interpreted by the shift of νCO to lower frequencies in relation to the free ligand. The vibrational modes νasSO3, νsSO3 and deformation δsO3, except for δasSO3, are not splitted, suggesting that the CF3SO3- anions are not coordinated. This aspect was further confirmed in the structure of the Pr(III) compound obtained by x-ray crystallography. The existence of six types of crystalline structures was verified by x-ray powder patterns. The absorption visible spectrum of the Nd(III) compound in the solid state, suggest both the existence of a non-cubic site around the central ion and the ionic character of the bonds. The emission spectrum of Eu(III), suggest that the symmetry is D2d distorted towards C2v The experimental intensity parameter Ω2 obtained for the Eu(III) complex and the compounds of lanthanides(III): La, Ce, Gd, Y and Lu dopped with Eu(III) suggests the influence of the mechanic dynamic coupling in the electronic transition 5Do → 7F2 that obey the selection rule ΔJ=2. The excitation spectrum of Eu(III) compound indicate the inexistence of the antenna effect. The TG and DTG curves of the addition compounds show their thermic behaviour the formation of LnF3 and LnOF as residues at temperatures of 900°C could be identified. The kinetic parameters of the water loss corresponding to the first stage of the dehydration of the lanthanide(III) trifluomethanesulfonate eneahydrated under isotermic conditions were determined both theoretically and experimentally. These results were obtained from mathematical model offered in the literature and a mathematical expression is derived in this work.
3

Χημεία, οπτικές και μαγνητικές ιδιότητες ετερομεταλλικών 3d/4f- μεταλλικών πλειάδων

Πολύζου, Χριστίνα 19 July 2012 (has links)
Τα ετερομεταλλικά σύμπλοκα μεταβατικών μετάλλων-λανθανιδίων (Ln) έχουν μεγάλη σημασία εξαιτίας των σημαντικών φυσικών (μαγνητικών και οπτικών) ιδιοτήτων τους. Μόνο λίγες πλειάδες ΝiII/LnIII και πολυμερή ένταξης έχουν αναφερθεί μέχρι σήμερα. Δύο γενικές προσεγγίσεις για τη σύνθεση συμπλόκων ΝiII/LnIII είναι: η στρατηγική που βασίζεται στη χρησιμοποίηση «μεταλλικών συμπλόκων ως υποκαταστατών» και η στρατηγική που βασίζεται στην «απλή ανάμιξη των συστατικών». Στην παρούσα Διπλωματική Εργασία εφαρμόζεται η δεύτερη κατά σειρά προσέγγιση για την παρασκευή των ακόλουθων ετερομεταλλικών συμπλόκων: [Ni8Tb8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (1.xMeOH.yH2O) [Ni8Ηο8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (2.xMeOH.yH2O) [Ni8Υ8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (3.xMeOH.yH2O) [Ni8Eu8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (4.xMeOH.yH2O) [Ni8Sm8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (5.xMeOH.yH2O) [Ni8Gd8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (6.xMeOH.yH2O) [Ni4Er4(OH)2(Pao)14(PaoH)2](ClO4)4.4MeOH.2H2O (7.4MeOH.2H2O) [Ni4Yb4(OH)2(Pao)14(PaoH)2](ClO4)4.4MeOH.2H2O (8.4MeOH.2H2O) [NiDy(OH)2(Phpao)3(NO3)2(MeOH)].xMeOH (9.xMeOH) {[NiDy(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (10.xMeOH.yH2O) {[NiCe(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (11.xMeOH.yH2O) {[NiPr(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (12.xMeOH.yH2O) {[NiNd(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (13.xMeOH.yH2O) {[NiSm(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (14.xMeOH.yH2O) {[NiEu(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (15.xMeOH.yH2O) {[NiTb(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (16.xMeOH.yH2O) {[NiHo(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (17.xMeOH.yH2O) {[NiEr(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (18.xMeOH.yH2O) {[NiGd(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (19.xMeOH.yH2O) όπου PaoH = 2-πυριδυλοαλδοξίμη, MepaoH = μέθυλο 2-πυριδυλοκετονοξίμη και PhpaoH = φαίνυλο 2-πυριδυλοκετονοξίμη. Οι μοριακές και κρυσταλλικές δομές των συμπλόκων προσδιορίστηκαν με κρυσταλλογραφία ακτίνων-Χ επί μονοκρυστάλλου. Eπίσης μελετήθηκαν οι μαγνητικές και οι οπτικές ιδιότητες επιλεγμένων συμπλόκων. / Heterometallic transition metal-lanthanide (Ln) complexes are of great importance because of their interesting physical (magnetic and optical) properties. Only few ΝiII/LnIII clusters and coordination polymers have been reported to date. Two general approaches for the synthesis of ΝiII/LnIII complexes are: the «metal complexes as ligands» strategy and the «one pot procedure» strategy. Here, the second approach has been applied for the preparation of the following complexes: [Ni8Tb8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (1.xMeOH.yH2O) [Ni8Ηο8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (2.xMeOH.yH2O) [Ni8Υ8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (3.xMeOH.yH2O) [Ni8Eu8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (4.xMeOH.yH2O) [Ni8Sm8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (5.xMeOH.yH2O) [Ni8Gd8O(OH)4(Pao)28](ClO4)5(NO3).xMeOH.yH2O (6.xMeOH.yH2O) [Ni4Er4(OH)2(Pao)14(PaoH)2](ClO4)4.4MeOH.2H2O (7.4MeOH.2H2O) [Ni4Yb4(OH)2(Pao)14(PaoH)2](ClO4)4.4MeOH.2H2O (8.4MeOH.2H2O) [NiDy(OH)2(Phpao)3(NO3)2(MeOH)].xMeOH (9.xMeOH) {[NiDy(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (10.xMeOH.yH2O) {[NiCe(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (11.xMeOH.yH2O) {[NiPr(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (12.xMeOH.yH2O) {[NiNd(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (13.xMeOH.yH2O) {[NiSm(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (14.xMeOH.yH2O) {[NiEu(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (15.xMeOH.yH2O) {[NiTb(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (16.xMeOH.yH2O) {[NiHo(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (17.xMeOH.yH2O) {[NiEr(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (18.xMeOH.yH2O) {[NiGd(Mepao)3(MepaoH)3](ClO4)2}2.xMeOH.yH2O (19.xMeOH.yH2O) where PaoH = 2-pyridylaldoxime, MepaoH = methyl 2-pyridylketoxime and PhpaoH = phenyl 2-pyridylketoxime. The molecular and crystal structures of the complexes have been determined by single-crystal X-ray crystallography. The magnetic and optical properties of selected complexes have also been studied.
4

Etude de la chélation du fer et de lanthanides trivalents et de l'ion uranyle par des sidérochélates dihydroxamiques / Study of iron, trivalent lanthanides and uranyl chelation by dihydroxamic siderochelates

Zaiter, Nissrine 27 September 2012 (has links)
Dans le but d’élucider la chimie de coordination et la structure des complexes formés avec des ligands organiques de la famille des sidérochélates, des études physico-chimiques sur la complexation du fer(III), de certains lanthanides(III) (La3+, Nd3+, Sm3+, Eu3+, Gd3+, Ho3+, Lu3+) et de l’uranium(VI) ont été effectuées. La connaissance des propriétés de complexation sidérophore-actinide est une étape essentielle pour appréhender le comportement à long terme d'un sol contaminé par des radioéléments. Trois acides dihydroxamiques synthétisés au laboratoire ((LCyEt)2–, (LCyPr)2– et (LO)2–) mimant un sidérophore d’origine fongique, l’acide rhodotorulique, ont été évalués pour la chélation du fer(III) par des titrages potentiométriques éventuellement couplés à une détection spectrophotométrique en milieu KNO3 0,1 M. Ces mesures ont permis de confirmer la présence de complexes di- et trileptiques dans les conditions d’excès du ligand. Le modèle chimique comprend au total cinq espèces de formule [Fem(L)lHh](3–2l+h)+ : [Fe(L)]+, [Fe(L)(OH)], [Fe(L)(OH)2]–, [Fe(L)2H] et [Fe2(L)3]. Le traitement numérique des données spectrophotométriques collectées dans le visible nous a conduit à proposer le spectre électronique pour chacune des espèces identifiées. En outre, la spectroscopie de masse par ionisation électrospray (ESI-MS) a confirmé la formation des espèces mono- ([Fe(L)]+) et dileptiques ([Fe(L)2H]). L’étude potentiométrique du ligand dihydroxamique abiotique (LCyPr)2– en présence de sept lanthanides trivalents a permis de proposer un modèle chimique comprenant cinq espèces mono- et dileptiques ([Ln(LCyPr)]+, [Ln(LCyPr)H]2+, [Ln(LCyPr)2]−, [Ln(LCyPr)2H]) et une espèce monohydroxylée [Ln(LCyPr)OH] en milieu KNO3 0,1 M. Par ailleurs, les mesures potentiométriques et spectrophotométriques pour le système UO22+/(LCyPr)2– suggèrent la formation à l’équilibre de cinq complexes d’uranium(VI) entre p[H] 2 et 10. Le modèle comprend les complexes mono- et dileptiques suivants : [UO2(LCyPr)], [UO2(LCyPr)H]+, [UO2(LCyPr)OH]−, [UO2(LCyPr)2]2− et [UO2(LCyPr)2H]−. La combinaison de ces deux techniques nous a permis d’appréhender la spéciation de ce radionucléide en milieu KNO3 0,1 M et de proposer des schémas de coordination pour les différentes espèces mises en évidence / With the aim of elucidating the coordination chemistry and the structure of the complexes formed with organic ligands belonging to the family of siderochelates, physico-chemical studies of the complexation of iron(III), some lanthanides(III) (La3+, Nd3+, Sm3+, Eu3+, Gd3+, Ho3+, Lu3+) and uranium(VI) have been performed. The knowledge of the properties of actinide-siderophore complexes is an essential step to assess long-term behavior of soils contaminated by actinides. Three dihydroxamic acids synthesized in our laboratory ((LCyEt)2–, (LCyPr)2– and (LO)2–) mimicking a fungal siderophore, rhodotorulic acid, have been evaluated with respect to iron(III) chelation by potentiometric and spectrophotometric titrations in 0,1 M KNO3. These measurements revealed the formation of di- and trileptic complexes in the presence of an excess of ligand. The chemical model includes five species of [Fem(L)lHh](3–2l+h)+ general formula : [Fe(L)]+, [Fe(L)(OH)], [Fe(L)(OH)2]–, [Fe(L)2H] and [Fe2(L)3]. The numerical treatment of the spectrophotometric data collected in the visible range, led us to propose the electronic absorption spectrum for each of the identified species. Moreover, electrospray ionization mass spectroscopy (ESI-MS) confirmed the formation of the mono- ([FeL]+) and dileptic ([FeL2H]) complexes. The potentiometric study of the abiotic dihydroxamic ligand (LCyPr)2– in the presence of seven trivalent lanthanides allowed us to propose a chemical model which includs five mono- and dileptic species ([Ln(LCyPr)]+, [Ln(LCyPr)H]2+, [Ln(LCyPr)OH], [Ln(LCyPr)2]–, [Ln(LCyPr)2H]) in 0,1 M KNO3. Finally, potentiometric and spectrophotometric measurements for the UO22+/(LCyPr)2– system suggested the formation at equilibrium to five of uranium(VI) complexes between p[H] = 2 and 10. The model includes the mono- and dileptic [UO2(LCyPr)], [UO2(LCyPr)H]+, [UO2(LCyPr)OH]–, [UO2(LCyPr)2]2–, [UO2(LCyPr)2H]– complexes. The combination of both techniques allowed us to assess the speciation of this radionuclide in KNO3 medium and to propose a coordination scheme for each complex
5

Το μοντέλο των σκληρών και μαλακών οξέων και βάσεων ως εργαλείο στη χημεία των μοριακών ετερομεταλλικών μαγνητών / The principle of hard and soft acids and bases as a tool in the chemistry of molecular heterometallic magnets

Λαδά, Ζωή 09 October 2014 (has links)
Τα ομομεταλικά σύμπλοκα που περιέχουν αποκλειστικά 3d μεταλλοϊόντα, καθώς και τα ετερομεταλλικά σύμπλοκα 3d/4f μεταλλοϊόντων αποτελούν σήμερα πόλο έλξης για τους ανόργανους χημικούς, λόγω των σημαντικών μαγνητικών, οπτικών και καταλυτικών τους ιδιοτήτων. Η χημεία των πολυπυρηνικών συμπλόκων (πλειάδων) των μετάλλων μετάπτωσης της 1ης Σειράς αποτελεί σήμερα ερευνητικό πεδίο αιχμής, καθώς προκύπτει από την αλληλοεπικάλυψη των επιστημών της Χημείας, της Βιολογίας και της Φυσικής, βρίσκοντας εφαρμογές σε τομείς όπως η Βιοανόργανη Χημεία, η Χημεία των Μοριακών Υλικών και η Νανοτεχνολογία. Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι μαγνητικές ιδιότητες των μοριακών πλειάδων μετά την ανακάλυψη του φαινομένου του Μονομοριακού Μαγνητισμού. Μαγνήτες Μοναδικού Μορίου, ΜΜΜ (Single Molecule Magnets, SMMs) είναι μοριακές πλειάδες οι οποίες μπορούν να διατηρούν το μαγνητικό προσανατολισμό τους, απουσία ενός μαγνητικού πεδίου, κάτω από μια συγκεκριμένη θερμοκρασία. Οι ΜΜΜ αντιπροσωπεύουν τη μικρότερη συσκευή αποθήκευσης πληροφοριών με ποικιλία δυνητικών εφαρμογών. Πολλοί ΜΜΜ των 3d μετάλλων έχουν υψηλό ολικό σπιν στη θεμελιώδη κατάσταση, αλλά υστερούν σημαντικά στο θέμα της μαγνητικής ανισοτροπίας, όπως αυτή αντικατοπτρίζεται στη μικρή τιμή της παραμέτρου σχάσης μηδενικού πεδίου D. Τα λανθανίδια διαδραματίζουν έναν ιδιαίτερο ρόλο στο Μαγνητισμό, εξαιτίας της μεγάλης μαγνητικής ροπής τους, και στις περισσότερες των περιπτώσεων, λόγω της τεράστιας μαγνητικής τους ανισοτροπίας. Στην τρισθενή τους όμως οξειδωτική κατάσταση, που είναι και η πιο σταθερή, παρουσιάζουν το μειονέκτημα της πολύ ασθενούς αλληλεπίδρασης ανταλλαγής μεταξύ των μεταλλοϊόντων, ως αποτέλεσμα της αποτελεσματικής προάσπισης των ασυζεύκτων ηλεκτρονίων των 4f τροχιακών. Το γεγονός αυτό οδήγησε στη διερεύνηση συστημάτων που συνδυάζουν 4f ιόντα με άλλα παραμαγνητικά είδη, όπως οργανικές ρίζες ή 3d ιόντα. Έτσι, η ταυτόχρονη ύπαρξη των τρισθενών λανθανιδίων (LnIII) και 3d μεταλλοϊόντων μπορεί να βελτιώσει το Μονομοριακό Μαγνητισμό των πλειάδων ένταξης οδηγώντας σε μαγνητικές ιδιότητες διαφορετικές από αυτές των 3d πλειάδων. Η Διπλωματική Εργασία μας στα πλαίσια του Μεταπτυχιακού Διπλώματος Ειδίκευσης «Αναλυτική Χημεία και Νανοτεχνολογία» αφορά τη χημεία των πλειάδων των 3d/4f- μεταλλοϊόντων. Στις προσπάθειές μας να συνθέσουμε ετερομεταλλικές πλειάδες Co ή Cu/LnΙΙΙ με υποκαταστάτες οξίμες (2-πυρίδυλο οξίμες, 2,4-πεντανιοδιόνη διοξίμη) και τη δι-2-πυρίδυλο κετόνη και τα παράγωγά της, απομονώσαμε και χαρακτηρίσαμε οικογένειες συμπλόκων μεταβάλλοντας κάθε φορά παραμέτρους της αντίδρασης, όπως τη φύση του οργανικού υποκαταστάτη, τον διαλύτη της αντίδρασης, την πηγή των μεταλλοϊόντων, τη θερμοκρασία, την πίεση, κ.α. Ως συνθετική πορεία χρησιμοποιήσαμε την “bottom-up” προσέγγιση. Η στρατηγική “bottom-up” χρησιμοποιεί τις χημικές ιδιότητες των διακριτών μορίων για να προκαλέσει: Α) Αυτο-οργάνωση ή αυτο-συναρμολόγηση σε μια χρήσιμη διαμόρφωση. Β) Οργάνωση σε συγκεκριμένη θέση. Η στρατηγική αυτή χρησιμοποιείται για τις έννοιες της μοριακής αυτο-οργάνωσης ή/και της μοριακής αναγνώρισης. Σε ευρύτερο επίπεδο, δηλαδή η “bottom-up” τεχνική δυνητικά μπορεί να παράγει παράλληλες συσκευές με πολύ φθηνότερους τρόπους σε σχέση με την “top-down” μέθοδο που χρησιμοποιείται ευρέως στη σύνθεση τεχνολογικού ενδιαφέροντος συσκευών. Η μοριακή αυτή προσέγγιση ξεκινά με χρήση πηγών ανεξάρτητων ατόμων ή μικρών μορίων για τη σύνθεση μεγάλων μοριακών νανοδομών με επιθυμητές και στοχευμένες ιδιότητες, με αποτέλεσμα να αναπτύσσεται το πεδίο της Ναντεχνολογίας. Δύο γενικές προσεγγίσεις για τη σύνθεση συμπλόκων Co ή Cu/LnIII είναι: η στρατηγική που βασίζεται στη χρησιμοποίηση «μεταλλικών συμπλόκων ως υποκαταστατών» και η στρατηγική που βασίζεται στην «απλή ανάμιξη των συστατικών». Στην παρούσα Διπλωματική Εργασία εφαρμόζεται η δεύτερη κατά σειρά προσέγγιση για την παρασκευή των παρακάτω συμπλόκων ενώσεων: [CoIII {(py)C(Η)NO}2{(py)C(Η)NOH}](ClO4) [CoIII2DyIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O [CoIII2GdIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O [CoIII2DyIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2GdIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2SmIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2TbIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIIIDyIII{(py)C(Ph)NO}3(NO3)3] [CoIIIEuIII{(py)C(Ph)NO}3(NO3)3] [CoIIISmIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIIITbIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIIIGdIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIII2Na{(py)C(Η)NO}6].(OMe) [CoIII2DyIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2GdIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2TbIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2PrIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2YIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [Cu2(diba)4(κινοξαλίνη)]n [Cu3Dy2{(py)2CO2}{(py)2CO(OMe)}3{(py)2CO(OEt)}(NO3)4(H2O)2](ClO4)(OH) [Cu6{(py)2CO(OMe)}6(NO3)2](ClO4)4 [Cu3{(py)2C(OMe)(OH)}2{(py)2C(OMe)O}2(ClO4)2] (ClO4)2 .2MeOH [Cu{(py)2C(OH){CH2COCH3)}2](NO3)2.2H2O Οι δομές των συμπλόκων προσδιορίσθηκαν με Κρυσταλλογραφία Ακτίνων Χ Μονοκρυστάλλου. Σε επιλεγμένα σύμπλοκα από αυτά που συνθέσαμε μελετώνται οι μαγνητικές τους ιδιότητες. Τα σύμπλοκα χαρακτηρίστηκαν με φυσικές και φασματοσκοπικές τεχνικές. Τα δεδομένα μελετήθηκαν σε σχέση με τις γνωστές δομές των συμπλόκων και των τρόπων ένταξης των υποκαταστατών. / Homometallic complexes which contain exclusively 3d metal ions and heterometallic complexes with 3d/4f metal ions attract, nowdays, the intense interest of inorganic chemists, due to their important magnetic, optical and catalytical properties. The chemistry of polynuclear complexes (clusters) of the 1st row transition metals is a cutting-edge research area, since combines the sciences of Chemistry, Biology and Physics with applications in the fields of Bioinorganic Chemistry, Chemistry of Molecular Materials and Nanotechnology. After the discovery of the phenomenon of Single Molecule Magntesism, the magnetic properties of molecular clusters are a growning research field. Single Molecule Magnets (SMMs) are molecular clusters which can retain their magnetic orientation, in the absence of a magnetic field, below a certain temperature. SMMs represent the smallest information storage devices with multiple potential applications. Many SMMs of 3d metals exhibit high total spin in the ground state, but their disadvantage is the low value of Zero Field Splitting (ZFS) parameter, D. Lanthanides play an important role in Magnetism, due to their large spin and in most cases huge magnetic anisotropy. In their trivalent oxidation state, which is the most stable, they have the disadvantage of the very weak exchange interactions between the metal ions, as a result of the efficient shielding of unpaired 4f electrons. This fact has led to the investigation of systems combining 4f-metal ions with other paramagnetic species, such as organic radicals or 3d-metal ions. Thus, the simultaneous presence of trivalent lanthanides (LnIII) and 3d metal ions can improve the Single Molecule Magnetism behavior of coordination clusters leading to magnetic properties different from those of 3d clusters. Our Diploma Work in the context of the M.Sc. in “Analytical Chemistry and Nanotechnology” concerns the chemistry of 3d/4f clusters. In our efforts to synthesize heterometallic clusters of Co or Cu/LnIII with oximes (2-pyridyl oximes, 2,4-pentanedione dioxime) and di-2-pyridyl ketone as ligands, we have isolated and characterized new families of complexes, studying various reaction parameters, such as the nature of the organic ligand, the solvent of the reaction, the source of the metal ions, the temperature, the pressure etc. As synthetic route, we have used the “bottom-up” approach. The “bottom-up” approach uses the chemical properties of discrete molecules in order to cause: a) Self-organization or Self-assembly in an interesting configuration. b) Assembly with a specific stereochemistry. This strategy is used for the concepts of molecular self-organization and/or molecular recognition. Hence in a broader sense, the “bottom-up” approach can produce potential applications in devices with cheaper ways in relation to the “top-down” approach which is used widely for the synthesis of devices with technological interest. This molecular approach begins with the use of independent sources of atoms or small molecules for the synthesis of large molecular nanostructures with preferential and targeted properties, developing though the field of Nanotechnology. Two general synthetic approaches for the synthesis of Co or Cu/LnIII complexes are: the strategy which is based on the use of “metal complexes as ligands” and the strategy based on the “simple mixing of components”. In this Diploma Work we have used the second approach for the synthesis of the below mentioned complexes: [CoIII {(py)C(Η)NO}2{(py)C(Η)NOH}](ClO4) [CoIII2DyIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O [CoIII2GdIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O [CoIII2DyIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2GdIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2SmIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2TbIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIIIDyIII{(py)C(Ph)NO}3(NO3)3] [CoIIIEuIII{(py)C(Ph)NO}3(NO3)3] [CoIIISmIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIIITbIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIIIGdIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH [CoIII2Na{(py)C(Η)NO}6].(OMe) [CoIII2DyIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2GdIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2TbIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2PrIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [CoIII2YIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN [Cu2(diba)4(quinoxaline)]n [Cu3Dy2{(py)2CO2}{(py)2CO(OMe)}3{(py)2CO(OEt)}(NO3)4(H2O)2](ClO4)(OH) [Cu6{(py)2CO(OMe)}6(NO3)2](ClO4)4 [Cu3{(py)2C(OMe)(OH)}2{(py)2C(OMe)O}2(ClO4)2] (ClO4)2 .2MeOH [Cu{(py)2C(OH){(CH2COCH3)}2](NO3)2.2H2O The structures of the complexes have been solved with Single Crystal X-ray Crystallography. The magnetic properties of selected compounds are investigated. The complexes have been characterized by several physical and spectroscopic techniques. The data are discussed in terms of the known structures of the complexes and the coordination modes of the ligands.

Page generated in 0.0651 seconds