Spelling suggestions: "subject:"laplacian matrix"" "subject:"iaplacian matrix""
1 |
Polytopes Associated to Graph LaplaciansMeyer, Marie 01 January 2018 (has links)
Graphs provide interesting ways to generate families of lattice polytopes. In particular, one can use matrices encoding the information of a finite graph to define vertices of a polytope. This dissertation initiates the study of the Laplacian simplex, PG, obtained from a finite graph G by taking the convex hull of the columns of the Laplacian matrix for G. The Laplacian simplex is extended through the use of a parallel construction with a finite digraph D to obtain the Laplacian polytope, PD.
Basic properties of both families of simplices, PG and PD, are established using techniques from Ehrhart theory. Motivated by a well-known conjecture in the field, our investigation focuses on reflexivity, the integer decomposition property, and unimodality of Ehrhart h*-vectors of these polytopes. A systematic investigation of PG for trees, cycles, and complete graphs is provided, which is enhanced by an investigation of PD for cyclic digraphs. We form intriguing connections with other families of simplices and produce G and D such that the h*-vectors of PG and PD exhibit extremal behavior.
|
2 |
Localização de autovalores de árvores e de grafos unicíclicosBraga, Rodrigo Orsini January 2015 (has links)
Neste trabalho, apresentamos um algoritmo que determina o número de autovalores de uma matriz simétrica qualquer que representa uma árvore, num dado intervalo real. Várias aplicações são obtidas em relação à distribuição dos autovalores da matriz laplaciana perturbada, uma matriz de representação de grafos que inclui, como casos particulares, a matriz de adjacências, a matriz laplaciana combinatória, a matriz laplaciana sem sinal e a matriz laplaciana normalizada, amplamente estudadas em Teoria Espectral de Grafos. Além disso, desenvolvemos também um algoritmo de localização de autovalores da matriz de adjacências de um grafo unicíclico. Este procedimento permite obter propriedades espectrais de grafos unicíclicos denominados centopeias unicíclicas. / In this work, we present an algorithm that computes the number of eigenvalues of any symmetric matrix that represents a tree, in a given real interval. Several applications are obtained about the distribution of the eigenvalues of the perturbed Laplacian matrix, which is a matrix representation of graphs that includes, as special cases, the adjacency matrix, the combinatorial Laplacian matrix, the signless Laplacian matrix and the normalized Laplacian matrix, widely studied in Spectral Graph Theory. In addition, we also develop an algorithm that locates the eigenvalues of the adjacency matrix of a unicyclic graph. This procedure allows us to obtain spectral properties of unicyclic caterpillars.
|
3 |
Localização de autovalores de árvores e de grafos unicíclicosBraga, Rodrigo Orsini January 2015 (has links)
Neste trabalho, apresentamos um algoritmo que determina o número de autovalores de uma matriz simétrica qualquer que representa uma árvore, num dado intervalo real. Várias aplicações são obtidas em relação à distribuição dos autovalores da matriz laplaciana perturbada, uma matriz de representação de grafos que inclui, como casos particulares, a matriz de adjacências, a matriz laplaciana combinatória, a matriz laplaciana sem sinal e a matriz laplaciana normalizada, amplamente estudadas em Teoria Espectral de Grafos. Além disso, desenvolvemos também um algoritmo de localização de autovalores da matriz de adjacências de um grafo unicíclico. Este procedimento permite obter propriedades espectrais de grafos unicíclicos denominados centopeias unicíclicas. / In this work, we present an algorithm that computes the number of eigenvalues of any symmetric matrix that represents a tree, in a given real interval. Several applications are obtained about the distribution of the eigenvalues of the perturbed Laplacian matrix, which is a matrix representation of graphs that includes, as special cases, the adjacency matrix, the combinatorial Laplacian matrix, the signless Laplacian matrix and the normalized Laplacian matrix, widely studied in Spectral Graph Theory. In addition, we also develop an algorithm that locates the eigenvalues of the adjacency matrix of a unicyclic graph. This procedure allows us to obtain spectral properties of unicyclic caterpillars.
|
4 |
Localização de autovalores de árvores e de grafos unicíclicosBraga, Rodrigo Orsini January 2015 (has links)
Neste trabalho, apresentamos um algoritmo que determina o número de autovalores de uma matriz simétrica qualquer que representa uma árvore, num dado intervalo real. Várias aplicações são obtidas em relação à distribuição dos autovalores da matriz laplaciana perturbada, uma matriz de representação de grafos que inclui, como casos particulares, a matriz de adjacências, a matriz laplaciana combinatória, a matriz laplaciana sem sinal e a matriz laplaciana normalizada, amplamente estudadas em Teoria Espectral de Grafos. Além disso, desenvolvemos também um algoritmo de localização de autovalores da matriz de adjacências de um grafo unicíclico. Este procedimento permite obter propriedades espectrais de grafos unicíclicos denominados centopeias unicíclicas. / In this work, we present an algorithm that computes the number of eigenvalues of any symmetric matrix that represents a tree, in a given real interval. Several applications are obtained about the distribution of the eigenvalues of the perturbed Laplacian matrix, which is a matrix representation of graphs that includes, as special cases, the adjacency matrix, the combinatorial Laplacian matrix, the signless Laplacian matrix and the normalized Laplacian matrix, widely studied in Spectral Graph Theory. In addition, we also develop an algorithm that locates the eigenvalues of the adjacency matrix of a unicyclic graph. This procedure allows us to obtain spectral properties of unicyclic caterpillars.
|
5 |
Nested (2,r)-regular graphs and their network properties.Brooks, Josh Daniel 15 August 2012 (has links) (PDF)
A graph G is a (t, r)-regular graph if every collection of t independent vertices is collectively adjacent to exactly r vertices. If a graph G is (2, r)-regular where p, s, and m are positive integers, and m ≥ 2, then when n is sufficiently large, then G is isomorphic to G = Ks+mKp, where 2(p-1)+s = r. A nested (2,r)-regular graph is constructed by replacing selected cliques with a (2,r)-regular graph and joining the vertices of the peripheral cliques. For example, in a nested 's' graph when n = s + mp, we obtain n = s1+m1p1+mp. The nested 's' graph is now of the form Gs = Ks1+m1Kp1+mKp. We examine the network properties such as the average path length, clustering coefficient, and the spectrum of these nested graphs.
|
6 |
Vertex Weighted Spectral ClusteringMasum, Mohammad 01 August 2017 (has links)
Spectral clustering is often used to partition a data set into a specified number of clusters. Both the unweighted and the vertex-weighted approaches use eigenvectors of the Laplacian matrix of a graph. Our focus is on using vertex-weighted methods to refine clustering of observations. An eigenvector corresponding with the second smallest eigenvalue of the Laplacian matrix of a graph is called a Fiedler vector. Coefficients of a Fiedler vector are used to partition vertices of a given graph into two clusters. A vertex of a graph is classified as unassociated if the Fiedler coefficient of the vertex is close to zero compared to the largest Fiedler coefficient of the graph. We propose a vertex-weighted spectral clustering algorithm which incorporates a vector of weights for each vertex of a given graph to form a vertex-weighted graph. The proposed algorithm predicts association of equidistant or nearly equidistant data points from both clusters while the unweighted clustering does not provide association. Finally, we implemented both the unweighted and the vertex-weighted spectral clustering algorithms on several data sets to show that the proposed algorithm works in general.
|
7 |
A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite GraphsHelmberg, Christoph, Rocha, Israel, Schwerdtfeger, Uwe 13 November 2015 (has links) (PDF)
We give a strongly polynomial time combinatorial algorithm to minimise the largest eigenvalue of the weighted Laplacian of a bipartite graph. This is accomplished by solving the dual graph embedding problem which arises from a semidefinite programming formulation. In particular, the problem for trees can be solved in time cubic in the number of vertices.
|
8 |
A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite GraphsHelmberg, Christoph, Rocha, Israel, Schwerdtfeger, Uwe 13 November 2015 (has links)
We give a strongly polynomial time combinatorial algorithm to minimise the largest eigenvalue of the weighted Laplacian of a bipartite graph. This is accomplished by solving the dual graph embedding problem which arises from a semidefinite programming formulation. In particular, the problem for trees can be solved in time cubic in the number of vertices.
|
9 |
連通圖的拉普拉斯與無符號拉普拉斯 譜半徑之研究 / On the Laplacian and the Signless Laplacian Spectral Radius of a Connected Graph羅文隆 Unknown Date (has links)
圖的譜半徑在數學方面以及其他領域有非常多的應用。在這篇論文裡,我們整理有關連通圖的拉普拉斯與無符號拉普拉斯譜半徑的論文。本文一開始探討一些圖的譜理論,並找出這些界限的關係。然後,我們將討論更精確的圖之拉普拉斯與無符號拉普拉斯譜半徑。最後,我們給一個例子,並使用前面所探討過的性質分析之。 / The spectral radius of a graph has been applied in mathenatics and in diverse disciplines.In this thesis, we survey some papers about the Laplacian spectral radius and the signless Laplacian spectral radius of a connected graph. Initially, we discuss some properties about the spectral graphs and find the relations between these bounds. Then, we discuss the upper bounds and lower bounds of the Laplacian and signless Laplacian spectral radius of a graph. In the end, we give an example and analyze it.
|
10 |
[en] RESEQUENCING TECHNIQUES FOR SOLVING LARGE SPARSE SYSTEMS / [pt] TÉCNICAS DE REORDENAÇÃO PARA SOLUÇÃO DE SISTEMAS ESPARSOSIVAN FABIO MOTA DE MENEZES 26 July 2002 (has links)
[pt] Este trabalho apresenta técnicas de reordenação para
minimização de banda, perfil e frente de malhas de
elementos finitos. Um conceito unificado relacionando as
malhas de elementos finitos, os grafos associados e as
matrizes correspondentes é proposto. As informações
geométricas, disponíveis nos programans de elemnetos
finitos, são utilizadas para aumentar a eficiência dos
algoritmos heurísticos. Com base nestas idéias, os
algoritmos são classificados em topológicos,
geométricos, híbridos e espectrais. Um Grafo de
Elementos Finitos - Finite Element Graph (FEG)- é
definido coo um grafo nodal(G), um garfo dual(G) ou um
grafo de comunicação(G.), associado a uma dada malha de
elementos finitos. Os algoritmos topológicos mais
utilizados na literatura técnica, tais como, Reverse-
CuthiiMcKee (RCM), Collins, Gibbs-Poole-Stockmeyer(GPS),
Gibbs-King (GK), Snay e Sloan, são inventigados
detalhadamente. Em particular, o algoritmo de Collins é
estendido para consideração de componentes não conexos
nos grafos associados e a numeração é invertida para uma
posterior redução do perfil das matrizer
correspondentes. Essa nova versão é denominada Modified
Reverse Collins (MRCollins). Um algoritmo puramente
geométrico, denominado Coordinate Based Bandwidth and
Profile Reduction (CBBPR), é apresentado. Um novo
algoritmo híbrido (HybWP) para redução de frente e
perfil é proposto. A matriz Laplaciana [L(G), L(G) ou L
(G.)], utilizada no estudo de propriedades espectrais de
grafos, é construída a partir das relações usuais de
adjacências entre vértices e arestas. Um algoritmo
automático, baseado em propriedades espectrais de FEGs,
é proposto para reordenação de nós e/ou elementos das
malhas associadas. Este algoritmo, denominado Spectral
FEG Resequencing (SFR), utiliza informações globais do
grafo; não depende da escolha de um vértice pseudo-
periférico; e não utiliza o conceito de estrutura de
níveis. Um novo algoritmo espectral para determinação de
vértices pseudo-periféricos em grafos também é proposto.
Os algoritmos apresentados neste trabalho são
implementados computacionalmente e testados utilizando-
se diversos exemplos numéricos. Finalmente, conclusões
são apresentadas e algumas sugestões para trabalhos
futuros são propostas. / [en] This work presents resequencing techniques for minimizing
bandwidth, profile and wavefront of finite element meshes.
A unified approach relating a finite element mesh, its
associated graphs, and the corresponding matrices is
proposed. The geometrical information available from
conventional finite element program is also used in order
to improve heuristic algorithms. Following these ideas,
the algorithms are classified here as a nodal graph (G), a
dual graph (G) or a communication graph (G.) associated
with a generic finie element mesh. The most widely used
topological algorithms, such as Reverse-Cuthill-McKee
(RCM), Collins, Gibbs-Poole-Stockmeyer (GPS), Gibbs-King
(GK), Snay, and Sloan, are investigated in detail. In
particular, the Collins algorithm is extended to consider
nonconnected components in associated graph and the
ordering provide by this algorithm is reverted for
improved profile. This new version is called Modified
Reverse Collins (MRCollins). A purely geometrical
algorithm, called Coordinate Based Bandwidth and Profile
Reduction (CBBPR), is presented. A new hybrid reordering
algorithm (HybWP) for wavefront and profile reduction is
proposed. The Laplacian matrix [L(G), L(G) or L(G.)],
used for the study of spectral properties of an FEG, is
constructed from usual vertex and edge conectivities of a
graph. An automatic algorithm, based on spectral
properties of an FEG, is proposed to reorder the nodes
and/or elements of the associated finite element meshes.
The new algorithm, called Spectral FEG Resequencing (SFR),
uses global information in the graph; it does not depende
on a pseudoperipheral vertex in the resequencing process;
and it does not use any kind of level structure of the
graph. A new spectral algorithm for finding
pseudoperipheral vertices in graphs is also proposed. The
algorithmpresented herein are computationally implemented
and tested against several numerical examples. Finally,
conclusions are drawn and directions for futue work are
given.
|
Page generated in 0.3079 seconds