Spelling suggestions: "subject:"large scale structure"" "subject:"marge scale structure""
31 |
The cosmic web unravelled : a study of filamentary structure in the Galaxy and Mass Assembly surveyAlpaslan, Mehmet January 2014 (has links)
I have investigated the properties of the large scale structure of the nearby Universe using data from the Galaxy and Mass Assembly survey (GAMA). I generated complementary halo mass estimates for all groups in the GAMA Galaxy Group Catalogue (G³C) using a modified caustic mass estimation algorithm. On average, the caustic mass estimates agree with dynamical mass estimates within a factor of 2 in 90% of groups. A volume limited sample of these groups and galaxies are used to generate the large scale structure catalogue. An adapted minimal spanning tree algorithm is used to identify and classify structures, detecting 643 filaments that measure up to 200 Mpc/h, each containing 8 groups on average. A secondary population of smaller coherent structures, dubbed `tendrils,' that link filaments together or penetrate into voids are also detected. On average, tendrils measure around 10 Mpc/h and contain 6 galaxies. The so-called line correlation function is used to prove that tendrils are real structures rather than accidental alignments. A population of isolated void galaxies are also identified. The properties of filaments and tendrils in observed and mock GAMA galaxy catalogues agree well. I go on to show that voids from other surveys that overlap with GAMA regions contain a large number of galaxies, primarily belonging to tendrils. This implies that void sizes are strongly dependent on the number density and sensitivity limits of the galaxies observed by a survey. Finally, I examine the properties of galaxies in different environments, finding that galaxies in filaments tend to be early-type, bright, spheroidal, and red whilst those in voids are typically the opposite: blue, late-type, and more faint. I show that group mass does not correlate with the brightness and morphologies of galaxies and that the primary driver of galaxy evolution is stellar mass.
|
32 |
The power spectrum and bispectrum of inflation and cosmic defectsLazanu, Andrei January 2016 (has links)
Much of the recent progress in cosmology has come from studying the power spectrum of the cosmic microwave background (CMB). The latest results from the Planck satellite confirmed that the inflationary paradigm with the $\Lambda$CDM six-parameter model provides a very good description of the observed structures in the Universe. Even so, additional parameters, such as cosmic defects, are still allowed by current observational data. Additionally, many of the inflationary models predict a significant departure from Gaussianity in the distribution of primordial perturbations. Higher order statistics, such as the bispectrum, are required to test and constrain such models. The late-time distribution of matter in the Universe - large-scale structure (LSS) - contains much more information than the CMB that has not yet been used. In this thesis, we look at both problems: the effects of cosmic defects, in particular cosmic strings and domain walls on the CMB power spectrum through numerical simulations, and the dark matter bispectrum of large-scale structure. Topological defects are predicted by most inflationary theories involving symmetry breaking in the early Universe. In this thesis we study the effects of cosmic strings and domain walls on the CMB by determining their power spectrum. We use Nambu-Goto and field theory simulations for cosmic strings and domain walls respectively, and we determine the power spectra they produce with a modified Einstein-Boltzmann solver sourced by unequal time correlators from components of the energy-momentum tensor of the defects. We use these spectra together with CMB likelihoods to obtain constraints on the energy scales of formation of the cosmic defects, finding $G\mu/c^{2} < 1.29 \times 10^{−7}$ and $\eta < 0.93$ MeV (at 95% confidence level) for cosmic strings and domain walls respectively, when using the Planck satellite likelihoods. For the matter bispectrum of LSS, we compare different perturbative and phenomenological models with measurements from $N$-body simulations by using shape and amplitude correlators and we determine on which scales and for which redshifts they are accurate. We propose a phenomenological ‘three-shape’ model, based on the fundamental shapes we have observed by studying the halo model that are also present in the simulations. When calibrated on the simulations, this model accurately describes the bispectrum on all scales and redshifts considered, providing a prototype bispectrum HALOFIT-like methodology that could be used to describe and test parameter dependencies.
|
33 |
MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATALeistedt, B., Peiris, H. V., Elsner, F., Benoit-Lévy, A., Amara, A., Bauer, A. H., Becker, M. R., Bonnett, C., Bruderer, C., Busha, M. T., Kind, M. Carrasco, Chang, C., Crocce, M., da Costa, L. N., Gaztanaga, E., Huff, E. M., Lahav, O., Palmese, A., Percival, W. J., Refregier, A., Ross, A. J., Rozo, E., Rykoff, E. S., Sánchez, C., Sadeh, I., Sevilla-Noarbe, I., Sobreira, F., Suchyta, E., Swanson, M. E. C., Wechsler, R. H., Abdalla, F. B., Allam, S., Banerji, M., Bernstein, G. M., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., Cunha, C. E., D’Andrea, C. B., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Jarvis, M., Kent, S., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Smith, R. C., Soares-Santos, M., Tarle, G., Thaler, J., Thomas, D., Vikram, V., Walker, A. R., Wester, W., Zhang, Y., Zuntz, J. 17 October 2016 (has links)
Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.
|
34 |
Cosmological tests with the FSRQ gamma-ray luminosity functionZeng, Houdun, Melia, Fulvio, Zhang, Li 01 November 2016 (has links)
The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Lambda cold darkmatter (Lambda CDM) and R-h = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both Lambda CDM and R-h = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour R-h = ct over Lambda CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.
|
35 |
DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERSMore, Surhud, Miyatake, Hironao, Takada, Masahiro, Diemer, Benedikt, Kravtsov, Andrey V., Dalal, Neal K., More, Anupreeta, Murata, Ryoma, Mandelbaum, Rachel, Rozo, Eduardo, Rykoff, Eli S., Oguri, Masamune, Spergel, David N. 28 June 2016 (has links)
We show that the projected number density profiles of Sloan Digital Sky Survey photometric galaxies around galaxy clusters display strong evidence for the splashback radius, a sharp halo edge corresponding to the location of the first orbital apocenter of satellite galaxies after their infall. We split the clusters into two subsamples with different mean projected radial distances of their members, < R-mem >, at fixed richness and redshift. The sample with smaller < R-mem > has a smaller ratio of the splashback radius to the traditional halo boundary R-200m than the subsample with larger < R-mem >, indicative of different mass accretion rates for these subsamples. The same subsamples were recently used by Miyatake et al. to show that their large-scale clustering differs despite their similar weak lensing masses, demonstrating strong evidence for halo assembly bias. We expand on this result by presenting a 6.6 sigma difference in the clustering amplitudes of these samples using cluster-photometric galaxy cross-correlations. This measurement is a clear indication that halo clustering depends on parameters other than halo mass. If < R-mem > is related to the mass assembly history of halos, the measurement is a manifestation of the halo assembly bias. However, our measured splashback radii are smaller, while the strength of the assembly bias signal is stronger, than the predictions of collisionless. cold dark matter simulations. We show that dynamical friction, cluster mis-centering, or projection effects are not likely to be the sole source of these discrepancies. However, further investigations regarding unknown catastrophic weak lensing or cluster identification systematics are warranted.
|
36 |
The linear growth of structure in the Rh = ct universeMelia, Fulvio 11 January 2017 (has links)
We use recently published redshift space distortion measurements of the cosmological growth rate, f sigma(8)(z), to examine whether the linear evolution of perturbations in the R-h = ct cosmology is consistent with the observed development of large-scale structure. We find that these observations favour R-h = ct over the version of Lambda cold dark matter (Lambda CDM) optimized with the joint analysis of Planck and linear growth rate data, particularly in the redshift range 0 < z < 1, where a significant curvature in the functional form of f sigma(8)(z) predicted by the standard model-but not by R-h = ct-is absent in the data. When Lambda CDM is optimized using solely the growth rate measurements; however, the two models fit the observations equally well though, in this case, the low-redshift measurements find a lower value for the fluctuation amplitude than is expected in Planck Lambda CDM. Our results strongly affirm the need for more precise measurements of f sigma(8)(z) at all redshifts, but especially at z < 1.
|
37 |
Optical-SZE scaling relations for DES optically selected clusters within the SPT-SZ SurveySaro, A., Bocquet, S., Mohr, J., Rozo, E., Benson, B. A., Dodelson, S., Rykoff, E. S., Bleem, L., Abbott, T. M. C., Abdalla, F. B., Allen, S., Annis, J., Benoit-Levy, A., Brooks, D., Burke, D. L., Capasso, R., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Chiu, I., Crawford, T. M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gangkofner, C., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Grandis, S., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Holzapfel, W. L., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Menanteau, F., Miquel, R., Ogando, R., Plazas, A. A., Rapetti, D., Reichardt, C. L., Reil, K., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Soergel, B., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., Zenteno, A. 07 1900 (has links)
We study the Sunyaev-Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 deg(2) of the Dark Energy Survey (DES) science verification data, detecting a clear stacked SZE signal down to richness lambda similar to 20. The SZE signature is measured using matched-filtered maps of the 2500 deg(2) SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass-observable relations that are either calibrated using SPT-selected clusters or through the Arnaud et al. (A10) X-ray analysis. We measure the SPT signal-to-noise zeta - lambda relation and two integrated Compton-y Y500-lambda relations for the DES-selected clusters and compare these to model expectations that account for the SZE-optical centre offset distribution. For clusters with lambda > 80, the two SPT-calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of 0.61 +/- 0.12 compared to the prediction. For clusters at 20 < lambda < 80, the measured SZE signal is smaller by a factor of similar to 0.20-0.80 (between 2.3 sigma and 10 sigma significance) compared to the prediction, with the SPT-calibrated scaling relations and larger lambda clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness-dependent bias that can be explained by some combination of (1) contamination of the observables and (2) biases in the estimated halo masses. We also discuss particular physical effects associated with these biases, such as contamination of. from line-of-sight projections or of the SZE observables from point sources, larger offsets in the SZE-optical centring or larger intrinsic scatter in the lambda-mass relation at lower richnesses.
|
38 |
Interacting dark energy models in Cosmology and large-scale structure observational tests / Modelos de energia escura com interação em Cosmologia e testes observacionais com estruturas em grande escalaMarcondes, Rafael José França 23 September 2016 (has links)
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a strange coincidence given that their time evolutions are completely different. Dark matter and dark energy are generally treated as perfect fluids. Interaction is introduced when we allow for a non-zero term in the right-hand side of their individual energy-momentum tensor conservation equations. We proceed with a phenomenological approach to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of these two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the growth rate approximated as f = Omega^gamma, where Omega is the percentage contribution from the dark matter to the energy content of the universe and gamma is the growth index, is derived in terms of the interaction strength and of other parameters of the model in the first case, while for the second model we show that a non-zero interaction cannot be accommodated by the index growth approximation. The successful expressions obtained are then used to compare the predictions with growth of structure observational data in a Markov Chain Monte Carlo code and we find that the current growth data alone cannot impose constraints on the interaction strength due to their large uncertainties. We also employ observations of galaxy clusters to assess their virial state via the modified Layzer-Irvine equation in order to detect signs of an interaction. We obtain measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium for a set of clusters. A compounded analysis indicates an interaction strength of 0.29^{+2.25}_{-0.40}, compatible with no interaction, but a compounded rest virial ratio of 0.82^{+0.13}_{-0.14}, which means a 2 sigma confidence level detection. Despite this tension, the method produces encouraging results while still leaves room for improvement, possibly by removing the assumption of small departure from equilibrium. / A cosmologia moderna oferece um ótimo entendimento do universo com uma precisão impressionante, possibilitada pelas tecnologias modernas das gerações mais novas de telescópios. O modelo cosmológico padrão, porém, não é livre de problemas do ponto de vista teórico, deixando perguntas ainda sem respostas. Uma possibilidade que tem sido proposta é a existência de um acoplamento entre setores escuros. A ideia de uma interação entre os componentes escuros poderia ajudar os físicos a entender por que vivemos em uma época do universo na qual a matéria escura e a energia escura são comparáveis em termos de densidades de energia, o que pode ser considerado uma estranha coincidência dado que suas evoluções com o tempo são completamente diferentes. Matéria escura e energia escura são geralmente tratadas como fluidos perfeitos. A interação é introduzida ao permitirmos um tensor não nulo no lado direito das equações de conservação dos tensores de energia-momento. Prosseguimos com uma abordagem fenomenológica para testar modelos de interação com observações de distorções no espaço de redshift. Em um universo plano composto apenas por esses dois fluidos, consideramos, separadamente, duas formas de interação, através de termos proporcionais às densidades de energia escura e de matéria escura. Uma expressão analítica para a taxa de crescimento aproximada por f = Omega^gamma, onde Omega é a contribuição percentual da matéria escura para o conteúdo do universo e gamma é o índice de crescimento, é deduzida em termos da interação e de outros parâmetros do modelo no primeiro caso, enquanto para o segundo caso mostramos que uma interação não nula não pode ser acomodada pela aproximação do índice de crescimento. As expressões obtidas são então utilizadas para comparar as previsões com dados observacionais de crescimento de estruturas em um programa para Monte Carlo via cadeias de Markov. Concluímos que tais dados atuais por si só não são capazes de restringir a interação devido às suas grandes incertezas. Utilizamos também observações de aglomerados de galáxias para analisar seus estados viriais através da equação de Layzer-Irvine modificada a fim de detectar sinais de interação. Obtemos medições de taxas viriais observadas, constante de interação, taxa virial de equilíbrio e desvio do equilíbrio para um conjunto de aglomerados. Uma análise combinada indica uma constante de interação 0.29^{+2.25}_{-0.40}, compatível com zero, mas uma taxa virial de equilíbrio combinada de 0.82^{+0.13}_{-0.14}, o que significa uma detecção em um intervalo de confiança de 2 sigma. Apesar desta tensão, o método produz resultados encorajadores enquanto ainda permite melhorias, possivelmente pela remoção da suposição de pequenos desvios do equilíbrio.
|
39 |
Melhorias na predição da estrutura de larga escala do universo por meio de teorias efetivas de campo / Towards Precise Large Scale Structure Predictions with Effective Field TheoriesRubira, Henrique 10 August 2018 (has links)
Com os próximos grandes projetos the observação do Universo, a cosmologia entrará em uma era de alta precisão de medidas. Novos dados trarão um novo entendimento da evolução do Universo, seus principais componentes e do comportamento da gravi- dade. Sendo assim, é fundamental também ter uma boa predição teórica para a formação de estrutura de larga escala em regime não-linear. A melhor maneira de resolver as equações hidrodinâmicas que descrevem o nosso universo é por meio de simulações cosmológicas na rede. Entretando, estas contém desafios, como a correta inclusão de física bariônica e a diminuição do alto tempo computacional. Uma outra abordagem muito usada é o cálculo das funções de cor- relação por meio de métodos perturbativos (em inglês, Standard Perturbation Theory, ou SPT). Entretanto, esta contém problemas variados: pode não convergir para algu- mas cosmologias e, caso convirja, não há certeza de convergência para o resultado correto. Além disso, há uma escala privilegiada nos limites integrais que envolvem o método perturbativo. Nós calculamos o resultado por esse método até terceira ordem e mostramos que o termo de terceira ordem é ainda maior que o de 2-loops e 3-loops. Isso evidencia alguns problemas descritos com o método perturbativo. O método de Teorias Efetivas de Campo aplicado ao estudo de LSS busca corrigir os problemas da SPT e, desta forma, complementar os resultados de simulações na rede. Em outras áreas da física, como a Cromodinâmica Quântica de baixas energias, EFTs também são usadas como um complemento a essas simulações na rede. EFTs melhoram a predição do espectro de potência da matéria por meio da inclusão dos chamados contra-termos, que precisam ser fitados em simulações. Estes contratermos, que são parâmetros livres, contém importante informação sobre como a física em pequenas escalas afeta a física nas escalas de interesse. Explicaremos os resultados para a predição em 3-loops de EFT, trabalho inédito. É possível usar as EFTs também no problema de conectar a campo de matéria com outros traçadores, como os halos e as galáxias, chamado de bias. Com as EFTs podemos construir uma base completa de operadores para parametrizar o bias. Será explicado como utilizar esses operadores para melhorar a predição do bias em escalas não-lineares. Serão calculados esses termos de EFT em simulações. Também será mostrado como renormalizar o bias em coordenadas de Lagrange. Por fim, será explicada outra importante aplicação das EFTs em cosmologia, mais especificamente em teorias de inflação. EFTs parametrizam desvios nas teorias de um campo único no chamado regime de slow-roll. / With future cosmological surveys, cosmology will enter in the precision era. New data will improve the constraints on the standard cosmological model enhancing our knowledge about the universe history, its components and the behavior of gravity. In this context, it is vital to come up with precise theoretical predictions for the formation of large-scale structure beyond the linear regime. The best way of solving the fluid equations that describe the large-scale universe is through lattice simulations, which faces difficulties in the inclusion of accurate baryonic physics and is very computationally costly. Another approach is the theoreti- cal calculation of the correlation statistics through the perturbative approach, called Standard Perturbation Theory (SPT). However, SPT has several problems: for some cosmologies, it may not converge and even when it converges, we cannot be sure it converges to the right result. Also, it contains a special scale that is the loop momenta upper-bound in the integral. In this work, we show results for the 3-loop calculation. The term of third order is larger than the terms of 2-loops and 3-loops, making explicit SPT problems. In this work, we describe the recent usage of Effective Field Theories (EFTs) on Large Scale Structure problems to correct SPT issues and complement cosmological simulations. EFTs are used in other areas of physics, such as low energy QCD, serving as a complement to lattice calculations. EFT improves the predictions for the matter power spectrum and bispectrum by adding counterterms that need to be fitted. The free parameters, instead of being a problem, bring relevant information about how the small-scale physics affects the scales for which we are trying to make statistical predictions. We show the calculation of the 3-loop EFT counterterms. EFTs are also used to explain main points connecting the matter density field with tracers like galaxies and halos. EFTs highlighted how to construct a complete basis of operators that parametrize the bias. We explain how we can use EFT to improve the bias prediction to non-linear scales. We compute the non-linear halo-bias by fitting the bias parameters in simulations. We also show the EFT renormalization in Lagrangian coordinates. Finally, we explain another critical EFT application to cosmology: in primordial physics. It can be used to parametrize deviations to the slow-roll theory within the inflationary paradigm.
|
40 |
Tests of the Planck cosmology at high and low redshiftsLemos Portela, Pablo January 2019 (has links)
The inflationary ΛCDM cosmology currently provides an accurate description of the Universe. It has been tested using several observational techniques over a wide redshift range, and it provides a good fit to most of them. In addition, it is a surprisingly economical model, requiring only six parameters to characterize the background cosmology and its fluctuations. In this model, the Universe is dominated by a cosmological constant Λ driving an accelerated expansion, and by cold dark matter. The strongest constraints on parameters to date come from observations of the temperature and polarization anisotropies of the cosmic microwave background measured by the Planck satellite. There are, however, indications of features in the Planck power spectra, possible differences with high redshift ground-based CMB experiments, and 'tensions' between Planck and low redshift measurements of the Hubble constant and weak gravitational lensing. In this thesis, we review possible tensions and extensions to the Planck cosmology, at both high and low redshifts. We begin with the high redshift analysis, using the Planck data to test models which introduce oscillatory features in the primordial power spectrum. We also study possible departures from slow roll inflation using the generalized slow-roll formalism, which allows for order unity deviations. Although we find models which give marginal improvements on the temperature or polarization power spectra, the combination of temperature and polarization is found to be consistent with a featureless power-law primordial spectrum. We then focus on measurements of the polarized CMB sky by the South Pole Telescope collaboration, who report tension between their measurements and the ΛCDM cosmology and with the cosmological parameters determined by Planck. We find evidence of a high χ2 in the SPTpol spectra which is unlikely to be cosmological. We report consistency between the Planck and SPTpol polarization spectra over the multipoles accessible to Planck (l ∼< 1500). We then investigate tension at low redshifts. We begin with weak gravitational lensing in which a number of surveys have suggested that the amplitude of the fluctuation spectra is lower than the Planck value. We review the small-angle approximations commonly used in galaxy weak lensing analyses and their effect on cosmological parameters. We find that these approximations are perfectly adequate for present and near future experiments. We find internal inconsistencies in the recent KiDS-450 analysis involving photometric redshifts and the KiDS covariance matrix at large scales. Finally, we investigate the difference between measurements of the present day expansion rate of the Universe. We apply a novel parameterization of the inverse distance ladder to determine the present date value of the Hubble parameter H0, which assumes General Relativity but makes no further assumptions about systematic errors or the nature of dark energy. Our analysis uses baryon acoustic oscillation data and Type Ia Supernovae to constrain the expansion history assuming a value of the sound horizon determined from the CMB. Our results are in tension with recent direct determinations of H0. We conclude that this tension, if real, cannot be solved by modifications of the ΛCDM model at late times. Instead, we would require a modification of the theory at early times which reduces the sound horizon. We conclude that at this time there is no compelling evidence that conflicts with the ΛCDM cosmology either at low or at high redshifts.
|
Page generated in 0.1078 seconds