• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 22
  • 20
  • 16
  • 14
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 302
  • 302
  • 42
  • 40
  • 39
  • 37
  • 36
  • 28
  • 28
  • 27
  • 27
  • 26
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Analyse chimique par ablation laser et caractérisation du plasma induit par laser par shadowgraphy /

Gravel, Jean-François. January 2009 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2009. / Bibliogr.: f. 127-129. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
142

Femtosecond laser material processing for micro-/nano-scale fabrication and biomedical applications

Choi, Hae Woon, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 198-205).
143

Chemistry with lasers / Química con láseres

Marillo Sialer, Estephany 18 May 2018 (has links)
El número de aplicaciones de la energía laser en el campo científico crece día a día. Estas no solo se han extendido en los campos de química, física y ciencia de materiales, sino también en biología y medicina. Este artículo es una breve introducción a los principios fundamentales del funcionamiento del láser, así como a su aplicación en el campo de la química. / The number of applications of lasers in science is constantly growing, with applications stretching from chemistry, physics and materials science to biology and medicine. This article provides a short overview of the fundamentals of lasers and an introduction to the application of lasers and laser ablation in chemistry.
144

Développement et validation d'un spectromètre de masse à ionisation laser pour l'analyse en ligne des nanoparticules dans l'atmosphère / Development and validation of a laser ionization mass spectrometer for on-line analysis of nanoparticles in the atmosphere

Gemayel, Rachel 27 September 2017 (has links)
L’objectif de cette thèse a été de développer et de valider une méthodologie d'analyse en ligne et en continue des nanoparticules (NPs) dans l'atmosphère qui permet d'effectuer des analyses mono-particulaires et donnant accès à la taille et à la chimie des NPs simultanément. Ce travail a été réalisé à l'aide d'un instrument nommé LAAP-ToF-MS (Laser Ablation Aerosol Particle - Time of Flight - Mass Spectrometer). Il est constitué de quatre parties principales qui sont : des lentilles aérodynamiques pour introduire les aérosols dans le spectromètre, un système optique de détection des particules afin de déterminer leurs tailles et de synchroniser le tir laser, un dispositif d'ionisation basé sur l'ablation laser et enfin un analyseur de masse à temps de vol pour l'analyse des ions produits. Les travaux de cette thèse se sont organisés en quatre parties principales :La première a été consacrée à la caractérisation du LAAP-ToF-MS afin de déterminer les performances individuelles des quatre éléments constitutifs de cet analyseur. Ces travaux ont fait l’objet d’un article publié dans le journal international "Atmospheric Measurement Techniques".La deuxième partie est dédiée au développement d'une méthode d'analyse quantitative, ces travaux ont fait l’objet d’un article publié dans le journal "Talanta".La troisième partie est consacrée au développement instrumental qui a été réalisé afin d’analyser les NPs non associées à des aérosols (Ø<100 nm). Ce développement a fait l’objet d’un brevet en cours de validation. La dernière partie donne quelques exemples concrets des applications et de l'utilité de cet instrument pour l'étude des NPs en laboratoire et sur le terrain. / The aim of this thesis is the development and the validation of an online analytical methodology for continuous measurements of nanoparticles (NPs) in the atmosphere. The particularity of this method is the capacity to determine the size and the chemical composition of each particle simultaneously, what we call mono-particular method. This work was conducted using the instrument LAAP-ToF-MS (Laser Ablation Aerosol Particle - Time of Flight - Mass Spectrometer). Being dedicated for single aerosol measurements, four parts constitute this instrument: aerodynamic lenses are used to introduce aerosols into the instrument, an optical detection system to determine the particles size and synchronize the laser shot used for the ionization process, and the produced ions are then analyzed by a Time of Flight (ToF) analyzer.The work is organized in four parts:The first part consists in the characterization of the LAAP-ToF-MS in order to determine the performances of each of its four parts. The results of this work were published in the international journal "Atmospheric Measurement Techniques".The second part is dedicated to the development of a quantitative analytical method and published in "Talanta" journal.The orientation of the third part is going into the direction of instrumental development to measure NPs not associated to aerosols (Ø<100 nm). Being the first development of this kind using the LAAP-ToF-MS, the work is highlighted by a patent which is under validation.In the end, the last part is dedicated to examples of concrete applications and the usefulness of the LAAP-ToF-MS instrument to study NPs during laboratory experiments as well as for field campaigns.
145

Acoplamento laser - espectrometro de massa de dupla focalizacao com fonte de plasma induzido (LA-HR-ICPMS): estudos fundamentais e analises quantitativa em amostras solidas

SHIBUYA, ELISA K. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:25:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:39Z (GMT). No. of bitstreams: 1 06792.pdf: 9499715 bytes, checksum: 6570c2a329eeda3f80a0df8144a8dcf0 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP / FAPESP:97/09917-0
146

Sub-10 MeV proton irradiation effects on a coating obtained from the pulsed laser ablation of W2B5/B4C for space applications

Tadadjeu, Sokeng Ifriky January 2015 (has links)
Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Technology: Electrical, Electronic and Computer Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology / This research investigates the effects of sub-10 MeV protons on coatings obtained from the pulsed laser ablation of W2B5/B4C. This is in an attempt to extend the bullet proof applications of W2B5/B4C to space radiation shielding applications, offering low cost and low mass protection against radiation including X-rays, neutrons, gamma rays and protons in low Earth orbit. The focus in this research, however, is on low energy protons. The associated problems addressed in this work are solar cell degradation and Single Event Upsets in high density semiconductor devices caused by low energy protons. The relevant constraints considered are the necessity for low cost, low mass and high efficiency solutions. The work starts with a literature review of the space environment, the interaction of radiation with matter, and on pulsed laser deposition as a technique of choice for the coating synthesis. This paves the way for the pulsed laser ablation of W2B5/B4C. The resulting coating is a solid solution of the form WC1-xBx which contains crystalline and amorphous forms. Two proton irradiation experiments are carried out on this coating, and the resulting effects are analysed. The effects of 900 keV proton irradiation were the melting and subsequent growing of nanorods on the surface of the coating, the lateral transfer of the proton energy across the coating surface, and the lateral displacement of matter along the coating surface. These effects show that the coating is a promising cost effective and low mass radiation shield against low energy protons. The effects of 1 MeV protons on this coating are the three-stage melting of rods formed on the coating surface, and further evidence of lateral transfer of energy across the coating surface. Optical measurements of this coating show that it is about 73% transparent in the Ultraviolet, Visible and near Infrared range. This allows it to be used as radiation shielding for solar cells, in addition to high density semiconductor devices, against low energy protons in low Earth orbit. Simulations show that based on coulombic interactions alone, the same level of protection coverglass offers to solar cells can be achieved with about half the thickness of WC1-xBx or less.
147

Acoplamento laser - espectrometro de massa de dupla focalizacao com fonte de plasma induzido (LA-HR-ICPMS): estudos fundamentais e analises quantitativa em amostras solidas

SHIBUYA, ELISA K. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:25:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:39Z (GMT). No. of bitstreams: 1 06792.pdf: 9499715 bytes, checksum: 6570c2a329eeda3f80a0df8144a8dcf0 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP / FAPESP:97/09917-0
148

Improving the utility of LA-ICP-MS for isotope ratio analyses of single particles with application to uranium oxide

Craig, Grant January 2016 (has links)
The determination of the isotopic composition of single uranium oxide particles, size 0.3-2 μm, for nuclear safeguards is current performed by either thermal ionisation mass spectrometry (TIMS) or Secondary Ion Mass Spectrometry (SIMS). Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), a well-established analytical technique for determining the isotopic composition of solid materials, has the potential to be another method by which single uranium oxide particles can be analysed, complementing established protocol, but requires optimisation. In this study the ability of LA-ICP-MS to determine the isotopic composition, principally 234U/238U, 235U/238U and 236U/238U, of glass reference materials and sub-micron uranium oxide particles is investigated. To achieve the best detection efficiency a prototype high-speed ablation cell and injector design, designed previously at Loughborough University, was coupled to a high efficiency multi collector (MC-) ICP-MS. As a result an increase in signal-to-noise ratio and a measured detection efficiency of 5-7% was achieved for a LA-MC-ICP-MS system. The capability of the LA-MC-ICP-MS system, for the determination of the uranium isotopic composition of single particles was compared to a more established low-volume ablation cell. A source of additional uncertainty, blind time arising from incompatibilities with the mixed detector array of the MC-ICP-MS was identified. The impact of the additional uncertainty on isotope ratio analysis was modeled and a method developed to filter out affected data. LA-ICP-MS and LA-MC-ICP-MS were used to successfully determine the uranium isotopic compositions of sub-micron uranium oxide particles, of a known certified composition. A sample planchet containing particles of two distinct isotopic compositions was resolved. The utility of three data evaluation strategies to determine the isotopic composition of single uranium oxide particles was investigated. The necessity and advantages of calculating isotope ratios using the geometric mean is demonstrated, which has application for isotope ratio analysis performed on all forms of mass spectrometry. A novel approach to prepare particulate samples for laser ablation analysis, cytocentrifugation, is described. By using as the solvent, a mixture of nail polish and acetone, dispersed particles are held in a strong film layer thin enough to allow embedded particles to be imaged by SEM-EDX. A sample of uranium oxide particles in an environmental matrix prepared using cytocentrifugation is analysed by LA-MC-ICP-MS and their isotopic composition resolved.
149

Characterizing the Evolution of Slab Inputs in the Earliest Stages of Subduction: Preliminary Evidence from the Fluid-Mobile Element (B, Cs, As, Li) Systematics of Izu-Bonin Boninitic Glasses Recovered During IODP Expedition 352

Sanatan, Keir Aavon 23 March 2017 (has links)
Fluid-mobile elements (FMEs) such as B, Cs, As, Li and Tl can mobilize readily under low P-T conditions (0.2-0.5 GPa). This makes them effective geochemical tracers that can be used as a way of tracking fluid-rock exchanges at the shallow depths encountered in the earliest stages of subduction. The Izu-Bonin-Mariana (IBM) subduction system is unique in that it preserves a record of the sequences produced from the onset of subduction through the development of arc magmatism. International Ocean Discovery Program (IODP) Expedition 352 recovered >800m of boninite core material from the earliest IBM magmatic events. Select boninitic glasses from these IODP 352 cores, found mostly as selvages on the rinds of pillow lavas and as clasts within hyaloclastites, were examined via EPMA and laser ablation ICP-MS techniques. The boninite glasses analyzed were separated into two categories – low-silica boninite (LSB) and high-silica boninites (HSB), based on the bulk chemistry and mineralogy of the lithostratigraphic locations from which the glass samples occur in the drill core. LSB are the earlier erupted boninite series, which show both greater variation in extent of differentiation and reflect less depleted mantle sources than HSB. Boron concentrations in the Expedition 352 boninite glasses analyzed range from 0.08 to 12.91 ppm, arsenic contents vary from 0.15 to 3.26 ppm, and cesium varies from 0.01 to 0.91 ppm. Lithium concentrations in the boninites range from 1 to 18.35 ppm while Tl concentrations vary from 10 to 155 ppb. FME concentrations trend toward higher values in HSB than in LSB. Low-Si boninites appear to form via simple mixing of depleted mantle source and an FME enriched fluid endmember, which mobilizes B, As, Cs, (Tl) and Li very early in the subduction process. Coupled with inputs from upwelling mantle, this FME-rich fluid triggers fluid-fluxed boninite melting. The high-Si boninites reflect the addition of a subduction component with a higher Ba/La ratio than that of the depleted mantle; this higher ratio more closely resembles that of Mariana cherts from altered Pacific crust. Thus, the high-Si boninites are consistent with the fluid-fluxed melting of a highly depleted, harzburgitic mantle source and reflect inputs of two distinguishable slab-derived components, one that is sedimentary in nature and another that is FME-enriched. This model for melting that is more similar to the melting regime of modern arcs and reflects the transition from early extension-related melting into that of a “normal” subduction system.
150

Studies On High Tc YBa2Cu3O6+x : Stability, Silver Addition And Thin Films

Manjini, S 04 1900 (has links) (PDF)
No description available.

Page generated in 0.1045 seconds