• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 35
  • 11
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 164
  • 157
  • 82
  • 80
  • 48
  • 42
  • 41
  • 32
  • 31
  • 28
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing

Roberts, Ibiye Aseibichin January 2012 (has links)
Laser Melting (LM) is an Additive Layer Manufacturing (ALM) process used to produce three-dimensional parts from metal powders by fusing the material in a layerby- layer manner controlled by a CAD model. During LM, rapid temperature cycles and steep temperature gradients occur in the scanned layers. Temperature gradients induce thermal stresses which remain in the part upon completion of the process (i.e. residual stresses). These residual stresses can be detrimental to the functionality and structural integrity of the built parts. The work presented in this thesis developed a finite element model for the purpose of investigating the development of the thermal and residual stresses in the laser melting of metal powders. ANSYS Mechanical software was utilised in performing coupled thermal-structural field analyses. The temperature history was predicted by modelling the interaction of the moving laser heat source with the metal powders and base platform. An innovative ‘element birth and death’ technique was employed to simulate the addition of layers with time. Temperature dependent material properties and strain hardening effects were also considered. The temperature field results were then used for the structural field analysis to predict the residual stresses and displacements. Experiments involving laser melting Ti-6Al-4V powder on a steel platform were performed. Surface topography analyses using a laser scanning confocal microscope were carried out to validate the numerically predicted displacements against surface measurements. The results showed that the material strain hardening model had a direct effect on the accuracy of the predicted displacement results. Using the numerical model, parametric studies were carried out to investigate the effects of a number of process variables on the magnitude of the residual stresses in the built layers. The studies showed that: (i) the average residual stresses increased with the number of melted powder layers, (ii) increasing the chamber temperature to 300°C halved the longitudinal stresses. At 300°C, compressive stresses appeared on the Ti64 surface layer, (iii) reducing the raster length from 1 mm to 0.5 mm reduced the average longitudinal stress in the top layer by 51 MPa (0.04σy), (iv) reducing the laser scan speed from 1200 mm/s to 800 mm/s increased the longitudinal stress by 57 MPa (0.05σy) but reduced the transverse stress by 46 MPa (0.04σy).
12

Stainless steels fabricated by laser melting : Scaled-down structural hierarchies and microstructural heterogeneities

Saeidi, Kamran January 2016 (has links)
Additive manufacturing is revolutionizing the way of production and use of materials. The clear tendency for shifting from mass production to individual production of net-shape components has encouraged using selective laser melting (SLM) or electron beam melting (EBM). In this thesis, austenitic, duplex and martensitic stainless steel parts were fabricated by laser melting technique using fixed laser scanning parameters. The fabricated steel parts were characterised using XRD, SEM, TEM/STEM, SADP and EBSD techniques. Mechanical properties of the fabricated steel parts were also measured. The mechanism of the evolution of microstructure during laser melting as well as the mechanism of the effect of developed microstructure on the mechanical properties was investigated. It was found that the intense localized heating, non-uniform and asymmetric temperature gradients and subsequently fast cooling introduces unique high level structural hierarchies and microstructure heterogeneities in laser melted steel parts. A unique structural hierarchy from the millimetre scale melt pools down to the sub-micron/nano scale cellular sub-grains was observed. The cellular sub-grains were 0.5-1μm with Molybdenum enriched at the sub-grain boundaries in SLM 316L. The Mo enriched cell boundaries affected the chemical and microstructure stability of the post heat treated samples. Well dispersed and large concentration of dislocations around the cell boundaries and well distributed oxide nano inclusions, imposed large strengthening and hardening effect that led to relatively superior tensile strength (700 MPa), yield strength (456 MPa), and microhardness (325Hv) compared to those of HIP 316L steel. The in-situ formation of oxide nano inclusions provided a unique way for preparation of oxide dispersion-strengthened (ODS) steel in a single process. The formation of oxide nano inclusions in the very low oxygen partial pressure of laser chamber was thermodynamically explained. High concentration of nano size dislocation loops, formation of nitride phases along with nitrogen enriched islands and oxide nano inclusions lead to strong dislocation pinning effect which strengthened the laser melted duplex stainless steel with a total tensile strength of 1321 MPa, yield strength of 1214 MPa and microhardness of 450HV. The grade 420 stainless steel was laser melted in Ar and N2 atmosphere which also showed a two level hierarchy with nanometric martensite lathes embedded in parental austenite cellular grains. The Ar treated sample had relatively higher retained austenite, lower YS (680-790 MPa) and UTS (1120-1200 MPa) compared to those treated in N2 (YS= 770-1100 MPa, UTS=1520-1560 MPa). The mechanism of the effect of atmosphere on phase transformation was explained. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.</p>
13

Study on the machinability and surface integrity of Ti6Al4V produced by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) processes / Pas de titre fourni

Milton, Samuel 28 May 2018 (has links)
Les technologies de fabrication additive(FA) basées sur la technique de fusion laser sur lit de poudres, telles que les procédés de fusion sélective laser (Selective Laser Melting ‘SLM’) et de fusion par faisceau d'électrons (Electron Beam Melting ‘EBM’), ne cessent de se développer afin de produire des pièces fonctionnelles principalement dans les domaines aérospatial et médical. Le procédé de fabrication additive offre de nombreux avantages, tels que la liberté de conception, la réduction des étapes de fabrication, la réduction de la matière utilisée, et la réduction de l'empreinte carbone lors de la fabrication d'un composant. Néanmoins, les pièces obtenues nécessitent une opération d’usinage de finition afin de satisfaire les tolérances dimensionnelles et l’état de surface. / Additive Manufacturing (AM) techniques based on powder bed fusion like Selective Laser Melting(SLM) and Electron Beam Melting processes(EBM) are being developed to make fully functional parts mainly in aerospace and medical sectors. There are several advantages of using AM processes like design freedom, reduced process steps, minimal material usage and reduced carbon footprint while producing a component. Nevertheless, the parts are built with near net shape and then finish machined to meet the demands of surface quality and dimensional tolerance.
14

Etude des interactions matériau/procédé en vue d'une optimisation des conditions opératoires du procédé de fabrication additive SLM sur des alliages d'aluminium pour des applications aéronautiques. / Study of the material / process interaction in order to optimize the operating conditions of the SLM additive manufacturing process applied to aluminum alloys.

Galy, Cassiopee 28 June 2019 (has links)
La fusion laser sélective d’un lit de poudres (Selective Laser Melting – SLM) connait un véritable essor depuis quelques années,notamment en ce qui concerne la production de pièces métalliques. La faible densité des alliages d’aluminium, conjuguée à l’optimisation de conception rendue possible grâce aux procédés de fabrication additive, assure un gain de masse des structures conséquent, ce qui intéresse fortement les industriels des domaines automobile et aéronautique. Cependant, les propriétés finales des pièces aluminium fabriquées par SLM dépendent des nombreux défauts sont générés lors de la fabrication (porosités, fissuration à chaud, état de surface, …). Cette thèse s’intéresse aux moyens de mieux maîtriser ces problèmes en explorant trois axes : Une identification et sélection des méthodes de caractérisations adaptées aux spécificités des matériaux métalliques élaborés par les procédés de fabrication additive « lit de poudre » a été mise en place. Par exemple, la comparaison de différentes méthodes de détermination de la densité relative de pièces nous a permis de montrer les avantages et inconvénients de chacune des techniques employées ; Une étude du moyen de fabrication SLM a mis en évidence l’influence de différents facteurs (flux de gaz, position des éprouvettes sur le plateau de construction, méthodes de dépôt de la poudre) sur les propriétés finales des pièces produites.Ces éléments ont un impact sur la densité des pièces, leurs propriétés de surface et leurs propriétés mécaniques. Nous avons ainsi constaté que la façon de positionner une pièce sur le plateau est une étape de la préparation d’une fabrication à ne pas négliger ; Les études paramétriques menées sur deux types d’alliages d’aluminium, AlSi7Mg0,6 et AM205, ont montré que la composition chimique de l’alliage d’aluminium employé influence de façon non négligeable le jeu de paramètres opératoires à appliquer pour fabriquer une pièce de manière optimale. La densité d’énergie volumique ψ, rapport de la puissance laser avec le produit de la vitesse de lasage, de la distance inter-cordons et de l’épaisseur de couche, est utilisée de façon classique pour l’optimisation des conditions opératoires en SLM. Nos études expérimentales à différentes échelles (1D et3D) ont permis de mettre en évidence les limites de ce critère. La combinaison de ces résultats à la simulation numérique du lasage d’un cordon de poudre a servi de base à la définition d’un premier modèle dont l’objectif sera à terme d’optimiser le choix des paramètres de fabrication. / Interest in selective laser melting (SLM) has been growing in recent years, particularly with regard to the production of metal parts.The low density of aluminum alloys, combined with the possible design optimization enabled by additive manufacturing processes,ensures a significant decrease in the mass of structures which is very interesting for manufacturers in the automotive and aerospaceindustries. However, it is difficult to control the final properties of aluminum parts manufactured by SLM because many defects, suchas porosity, hot cracking, and surface roughness, are generated during the process. To better understand how to optimize theperformance of SLM aluminium parts, several studies were conducted during this work: An identification and selection of characterization methods well-adapted to the specificities of metallic materials developedby powder bed additive manufacturing processes was established. For instance, the comparison of different methods ofdetermining the relative density of parts showed the advantages and disadvantages of each of the techniques; A study of the SLM machine highlighted the influence of various factors (gas flow, positions of specimens on the constructionplate, or methods of depositing the powder) on the final properties of the produced parts. These elements have an impacton the density of the parts, their surface properties, and their mechanical properties. We found that the positioning of a pieceon the tray is a critical step in the preparation of a build that is not to be neglected; Parametric studies carried out on two types of aluminum alloys—AlSi7Mg0,6 and AM205—have shown that the chemicalcomposition of the aluminum alloy used has a significant influence on the set of operating parameters required tomanufacture an acceptable aluminum alloy part. The energy density, ψ, which is the ratio of the laser power to the productof the lasing speed, the hatching distance, and the layer thickness, is conventionally used for the optimization of the operatingconditions in SLM. Our experimental studies performed at different scales (1D and 3D) have shown the limits of this criterion.The combination of these results with the numerical simulation of the lasing of a single powder bead served as a basis forthe definition of an initial model, the final objective of which will be to optimize the choice of manufacturing parameters.
15

Selektives Laserstrahlschmelzen von Titanaluminiden und Stahl / Selective laser melting of titaniumaluminides and steel

Löber, Lukas 08 September 2015 (has links) (PDF)
Diese Arbeit beschäftigt sich mit den aktuell bestehenden Herausforderungen der Technologie der additiven Fertigung in Form des selektiven Laserstrahlschmelzen (SLM). Es soll sich mit den Aspekten des Leichtbaus beim SLM-Verfahren beschäftigt werden. Dies geschieht mit zwei theoretischen Lösungsansätzen zur Gewichtsreduzierung von Bauteilen: 1. der Einsatz von Werkstoffen geringerer Dichte oder von neuen hochfesten Werkstoffen; 2. neue Bauweisen durch neue Konstruktions- und Werkstoffaufbauprinzipien. Praktisch erfolgt der erste Ansatz durch die Entwicklung von Prozessparametern und deren Einfluss auf das Gefüge von - für das SLM-Verfahren - neuen Leichtbauwerkstoffen, den Titanaluminiden (TiAl). Aus der großen Spanne von verschiedenen TiAl-Legierungen wurden für diese Arbeit folgende Vertreter Ti38,87Al43,67Nb4,08Mo1,02B0,1 und Ti48Al48Cr2Nb2 aufgrund ihres guten Eigenschaftsspektrums und der unterschiedlichen Erstarrungsvoränge gewählt. Aufgrund der hohen Anzahl von Einflussgrößen sollen verschiedene Ansätze, wie statistische Versuchspläne oder Einzelbahncharakterisierungen, verfolgt werden, um eine effiziente und schnelle Parameteroptimierung zu erzielen. Der zweite Ansatz verfolgt die Herstellung verschiedener Gitterstrukturen aus 1.4404-Stahl (X2CrNiMo 17-12-2). Durch das Fertigen von Gittern mit verschiedenen relativen Dichten, was über eine Variation der Durchmesser der Streben erreicht wird, sowie das mechanische Testen dieser, ist es möglich, eine Datengrundlage für zukünftige Konstruktionen zu erstellen. / This work deals with the currently existing challenges of technology of additive manufacturing in the form of selective laser melting (SLM). The aspects of lightweight construction with the SLM process will be highlighted. This is done with two theoretical approaches to weight reduction of components: 1. the use of materials of lower density or new high-strength materials; 2. new construction methods through new design and material construction principles. In practice, the first approach is performed through the development of process parameters and their influence on the microstructure of - for the SLM-process – a new lightweight material, the titanium aluminide (TiAl). Among the large range of various TiAl alloys the following two representatives Ti38,87Al43,67Nb4,08Mo1,02B0,1 and Ti48Al48Cr2Nb2 were chosen because of their good property spectrum and their different solidification behavior. The second approach pursued the production of various lattice structures made of 1.4404 steel (X2CrNiMo 17-12-2). By fabricating lattices with different relative densities, which is achieved by varying the diameter of the struts, and the mechanical testing of those, it is possible to create a data base for future construction principles.
16

Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

Recht, Daniel 26 July 2012 (has links)
This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold. / Engineering and Applied Sciences
17

Optimierte Parameterfindung und prozessorientiertes Qualitätsmanagement für das Selective-Laser-Melting-Verfahren

Eisen, Markus Andre January 2009 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2009
18

Validation and applications of the material point method

Tabatabaeian Nimavardi, Ali January 2017 (has links)
The Material Point Method (MPM) is a modern finite element method that is classified as a point based method or meshless method, while it takes the advantage of two kinds of spatial discretisation that are based on an arbitrary Eulerian-Lagrangian description of motion. The referenced continuum is represented by the material points, and the motions are tracked through a computational background mesh, that is an arbitrary constant mesh which does not move the material. Hence, in the MPM mesh distortion especially in the large deformation analysis is naturally avoided. However, MPM has been employed to simulate difficult problems in the literature, many are still unsatisfactory due to the lack of rigorous validation. Therefore, this thesis firstly provides a series of simple case studies which any numerical method must pass to test the validity of the MPM, and secondly demonstrate the capability of the MPM in simulating difficult problems such as degradation of highly swellable polymers during large swelling that is currently difficult to handle by the standard finite element method. Flory’s theory is incorporated into the material point method to study large swelling of polymers, and degradation of highly swellable polymers is modelled by the MPM as a random phenomenon based on the normal distribution of the volumetric strain. These numerical developments represent adaptability of the MPM and enabling the method to be used in more complicated simulations. Furthermore, the advantages of this powerful numerical tool are studied in the modelling of an additive manufacturing technology called Selective Laser Melting (SLM). It is shown the MPM is an ideal numerical method to study SLM manufacturing technique. The focus of this thesis is to validate the MPM and exhibit the simplicity, strength, and accuracy of this numerical tool compared with standard finite element method for very complex problems which requires a complicated topological system.
19

Fusion sélective par laser de lits de poudre : Étude sur le recyclage de la poudre et détection de défauts au cours de la fabrication par imagerie thermique / Selective laser melting of powder beds : Study of the recycling of the unused powder and detection of manufacturing defects by thermal imaging

Vinson, Pierre 21 December 2015 (has links)
La fabrication directe et additive regroupe un ensemble de technologies de mise en forme des matériaux en rupture avec les procédés conventionnels. L'industrie aéronautique et aérospatiale s'intéresse fortement à ces nouveaux procédés, dont la fusion sélective par laser de lits de poudre métallique (SLM). Cette thèse présentera les enjeux de la fabrication additive ainsi que certains procédés. Une étude bibliographique a été menée sur deux alliages aéronautiques utilisés dans ces travaux : l'alliage de titane TA6V et le superalliage base nickel Nimonic 263. Les travaux présentés dans ce rapport comprennent l'étude de la poudre métallique brute d'atomisation (morphologie, granulométrie, composition chimique). D'autre part, l'étude de la recyclabilité de la poudre utilisée en SLM est présentée pour le TA6V, tant en ce qui concerne l'évolution de la poudre elle-même que celle des propriétés mécaniques des pièces qui en sont issues. Par ailleurs ce travail traite d'un modèle de consolidation du lit de poudre permettant également d'évaluer la productivité du procédé. Enfin, une étude paramétrique et thermique menée sur le Nimonic 263 en vue de l'établissement d'une solution de contrôle procédé est présentée. / Direct and additive manufacturing regroups several new technologies that are very different from conventional manufacturing processes such as casting. Aeronautic and space industries are really interested in those new processes such as the selective laser melting of metallic powder beds know as the SLM process. This PhD thesis report will show the issues of additive manufacturing and will describe some processes. A bibliography study has been done on two aeronautical alloys used in this work: titanium alloy TA6V and nickel-based superalloy Nimonic 263. This work also presents powder characterization (granulometry, morphology chemical composition) for the gas atomized powder. Besides, study has been done on the recyclability of the TA6V powder for the SLM process, for the powder itself and the mechanical properties of parts built from recycled powder. Moreover, this works deals with a powder bed consolidation model to estimate the productivity of the process. Then, a parametric and thermal study has been done on the Nimonic 263. The coaxial system for thermal visualization is described such as the image processing algorithm used. Finally, this reports deals with the study of thermal signature of typical SLM defects.
20

Numerical Modeling of Thermal and Mechanical Behaviors in the Selective Laser Sintering of Metals

Promoppatum, Patcharapit 01 April 2018 (has links)
The selective laser sintering (SLS) process or the additive manufacturing (AM) enables the construction of a three-dimensional object through melting and solidification of metal powder. The primary advantage of AM over the conventional process is providing the manufacturing flexibility, especially for highly complicated products. The quality of AM products depends upon various processing parameters such as laser power, laser scanning velocity, laser scanning pattern, layer thickness, and hatch spacing. The improper selection of these parameters would lead to parts with defects, severe distortion, and even cracking. I herein perform the numerical and experimental analysis to investigate the interplay between processing parameters and the defect generation. The analysis aims to resolve issues at two different scales, micro-scale and product-scale. At the micro-scale, while the numerical model is developed to investigate the interaction of the laser and materials in the AM process, its advantages and disadvantages compared to an analytical approach (Rosenthal’s equation), which provides a quicker thermal solution, are thoroughly studied. Additionally, numerical results have been verified by series of experiments. Based on the analysis, it is found that the simultaneous consideration of multiple processing parameters could be achieved using the energy density. Moreover, together with existing criteria, a processing window is numerically developed as a guideline for AM users to avoid common defects at this scale including the lack of fusion, balling effect, and over-melting. Thermal results at a micro-scale are extended as an input to determine the residual stress initiation in AM products. The effect of energy density and substrate temperature on a residual stress magnitude is explored. Results show that the stress magnitude within a layer is a strong function of the substrate temperature, where a higher substrate temperature results in a lower stress. Moreover, the stress formation due to a layer’s addition is studied, in which the stress relaxation at locations away from a top surface is observed. Nevertheless, even though the micro-scale analysis can resolve some common defects in AM, it is not capable of predicting product-scale responses such as residual stress development and entire product’s distortion. As a result, the multiscale modeling platform is developed for the numerical investigation at the product level. Three thermal models at various scales are interactively used to yield an effective thermal development calculation at a product-scale. In addition, the influence of the multiple layers, energy densities and scanning patterns on the residual stress formation has been addressed, which leads to the prediction of the residual stress development during the fabrication. The distortion of products due to the residual stress can be described by the product-scale model. Furthermore, among many processing parameters, the energy input and the scanning length are found to be important factors, which could be controlled to achieve the residual stress reduction in AM products. An optimal choice of a scanning length and energy input can reduce an as-built residual stress magnitude by almost half of typically encountered values. Ultimately, the present work aims to illustrate the integration of the computational method as tools to provide manufacturing qualification for part production by the AM process.

Page generated in 0.1017 seconds