• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 201
  • 76
  • 38
  • 29
  • 12
  • 9
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 750
  • 329
  • 326
  • 305
  • 256
  • 244
  • 154
  • 150
  • 118
  • 104
  • 102
  • 94
  • 92
  • 88
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

Eriksson, Ola January 2003 (has links)
<p>Waste management is something that affects most people. Thewaste amounts are still increasing, but the waste treatment ischanging towards recycling and integrated solutions. In Swedenproducers’responsibility for different products, a taxand bans on deposition of waste at landfills implicates areorganisation of the municipal solid waste management. Plansare made for new incineration plants, which leads to that wastecombustion comes to play a role in the reorganisation of theSwedish energy system as well. The energy system is supposed toadapt to governmental decisions on decommission of nuclearplants and decreased use of fossil fuels.</p><p>Waste from private households consists of hazardous waste,scrap waste, waste electronics and wastes that to a largeextent are generated in the kitchen. The latter type has beenstudied in this thesis, except for newsprint, glass- and metalpackages that by source separation haven’t ended up in thewaste bin. Besides the remaining amount of the above mentionedfractions, the waste consists of food waste, paper, cardboard-and plastic packages and inert material. About 80-90 % of thismixed household waste is combustible, and the major part ofthat is also possible to recycle.</p><p>Several systems analyses of municipalsolid waste managementhave been performed. Deposition at landfill has been comparedto energy recovery, recycling of material (plastic andcardboard) and recycling of nutrients (in food waste).Environmental impact, fuel consumption and costs are calculatedfor the entire lifecycle from the households, until the wasteis treated and the by-products have been taken care of.</p><p>To stop deposition at landfills is the most importantmeasure to take as to decrease the environmental impact fromlandfills, and instead use the waste as a resource, therebysubstituting production from virgin resources (avoidingresource extraction and emissions). The best alternative tolandfilling is incineration, but also material recycling andbiological treatment are possible.</p><p>Recycling of plastic has slightly less environmental impactand energy consumption than incineration. The difference issmall due to that plastic is such a small part of the totalwaste amount, and that just a small part of the collectedamount is recycled. Cardboard recycling is comparable toincineration; there are both advantages and disadvantages.Source separation of food waste may lead to higher transportemissions due to intensified collection, but severalenvironmental advantages are observed if the waste is digestedand the produced biogas substitutes diesel in busses.Composting has no environmental advantages compared toincineration, mainly due to lack of energy recovery. Therecycling options are more expensive than incineration. Theincreased cost must be seen in relation to the environmentalbenefits and decreased energy use. If the work with sourceseparation made by the households is included in the analysis,the welfare costs for source separation and recycling becomesnon-profitable. It is however doubted how much time is consumedand how it should be valuated in monetary terms.</p><p>In systems analyses, several impacts are not measured.Environmental impact has been studied, but not allenvironmental impact. As the parts of the system are underconstant change, the results are not true forever. Recyclingmay not be unambiguously advantageous today, but it can be inthe future.</p><p>Despite the fact that systems analysis has been developedduring 10 years in Sweden, there are still many decisions takenregarding waste management without support from systemsanalysis and use of computer models. The minority of users ispleased with the results achieved, but the systems analysis isfar from easy to use. The adaptation of tools and models to thedemands from the potential users should consider thatorganisations of different sizes have shifting demands andneeds.</p><p>The application areas for systems analysis and models arestrategic planning, decisions about larger investments andeducation in universities and within organisations. Systemsanalysis and models may be used in pre-planning procedures. Apotential is a more general application (Technology Assessment)in predominantly waste- and biofuel based energy processes, butalso for assessment of new technical components in a systemsperspective. The methodology and systems approach developedwithin the systems analysis has here been transformed to anassessment of environmental, economic and technical prestandaof technical systems in a broad sense.</p>
102

Miljökrav inom leverantörskedjan : En studie med utgångspunkt i värmeljuskoppar på Liljeholmens Stearinfabriks AB

Florén, Kajsa January 2015 (has links)
Att ställa miljökrav inom leverantörskedjorna har blivit allt vanligare i takt med ökat miljöarbete. Det är dock bristfälligt dokumenterat hur väl eventuella miljökrav uppfylls kedjan igenom. För att organisera miljöarbetet har strategier uppkommit vilka tar hänsyn till kedjans miljöpåverkan, såsom Green Supply Chain Management (GSCM). Genom en fallstudie kartlades vilka miljökrav som ställdes, om kraven var konsekventa längs leverantörskedjan och hur kraven kunde relateras till företagens övriga miljöarbete. Fallstudien hade sin utgångspunkt i Liljeholmens Stearinfabriks AB med fokus på värmeljuskoppens leverantörskedja. Genom en semistrukturerad intervju har företagen inom kedjan svarat på frågor kring bl.a. miljökrav. Dessutom har en LCA gjorts på värmeljuskoppen för att se huruvida miljökraven var adekvata med tanke på produktens miljöpåverkan. Resultatet visade att företagen ställde miljörelaterade krav. Dessa krav berörde främst leverantörens allmänna miljöarbete snarare än själva produkten. Typen av ställda krav var ej konsekvent med företagens miljöarbete. LCAn visade på att produktens största miljöpåverkan härrör från aluminiumet. Miljökraven borde således inriktas på större andel återvunnet material.
103

Teaching life cycle assessment using biofuels to develop process thinking and strengthen core science understanding

Moyers, Audrea Haynes 04 November 2011 (has links)
This action research project focuses on teaching life cycle assessment to engineering students in high school, using biofuels as a relevant application. The study examined the effectiveness of teaching methods related to both the engineering content—life cycle assessment—and the science content—biofuel production. It also examined underlying conceptions that students have about the preferability of some common consumer products from an environmental perspective, as well as their knowledge of ethanol compared to gasoline. The participants in the study consisted of sixteen college students enrolled in an Engineering Energy Systems course while pursuing either an undergraduate or graduate degree related to teaching engineering and science at the secondary level. The students participated in lessons written for a high school engineering science course currently under development in the UTeach Engineering program at The University of Texas at Austin. Data were collected from a pre- and post-unit assessment, observation of student activities and behaviors, and a participant survey. The results of the study suggest that student understanding of the environmental implications of products or processes is deeper after completion of the unit. The study also shows a positive relationship between hands-on sense-building activities and student engagement. As an action research project, the primary goal is the immediate improvement of teaching to increase learning in the classroom. Modifications to the unit and lesson design have been made based on the results of the study in preparation for using the unit with high school students in the following school year. / text
104

Livscykelanalysen som metod mot ökad miljöhänsyn och hushållning av energi och material : En fallstudie med utvärdering av verktyg anpassade för LCA på byggnader

Ström, Kristina January 2014 (has links)
The method of analyzing environmental impacts and resource use from a lifecycle perspective is growing in popularity as a method giving the opportunity to lessen negative impact on the environment and depletion of natural resources through comparative analysis. The report focuses on comparing tools available for lifecycle analysis of buildings and building materials as well as the method of LCA in general. A field study is made through analyzing a building with the aid of LCA and according to ISO 14040, and this brings further clarity as to how the method is used. The results show advantages and disadvantages of current LCA tools for buildings as well as pros and cons of the method of LCA itself. The results of the field study indicate the risk that LCA can be used and interpreted subjectively as well as the risk of setting too low data quality. Results also highlight the absence of some important features linked to environmental concern and sustainable resource management. However, if LCA is used in an objective and scientific manner it might be a key to using proper resource management in terms of lessening negative impacts on the environment and depletion of natural resources and some suggstions are made as to how to change the standards of the method.
105

The Sustainability of Biofuels Produced from Microalgae

Canter, Christina Elizabeth January 2013 (has links)
Fossil fuels are not sustainable due to their worldwide depletion and greenhouse gas (GHG) emissions. Transportation biofuels produced from microalgae are sustainable if GHG emissions are lower than fossil fuels and the sources for materials used during production are sustainable. Four areas were evaluated to address these concerns. First, a study of peer reviewed life-cycle analyses (LCAs) was performed. The purpose of this evaluation was to determine which processing choices during cultivation have the most impacts. Data from nine authors was converted to similar units, and a new LCA was performed to evaluate the impacts. Overall GHG emissions per kg of algae cultivation ranged from 0.1 - 4.4 kg CO₂ eq. / kg algae, with the most of the emissions coming from fertilizer contributions. The second topic evaluated was the GHG emissions from experimental dewatering technologies. The five experimental technology emissions, for acoustic harvesting, membrane filtration, flocculation, electrocoagulation and flocculation plus belt filtration, were compared to a modeled dissolved air flotation technology and a fossil fuel source. For a functional unit of one MJ of renewable diesel (RD), membrane filtration had the lowest GHG emissions at 40.8 g CO₂(eq)/MJ RD. Dissolved air flotation was the highest scenario at 51.9 g CO₂(eq)/MJ RD. All technologies were lower than gasoline at 90.7 g CO₂(eq)/MJ gasoline. The third topic evaluated was the GHG emissions from the materials used for plant construction. A LCA was performed for the infrastructure materials and compared to results from the fuel-cycle. Plastic from pond liners had the largest contribution to GHG emissions for the baseline case. Increasing productivity and lipid content both decreased infrastructure emissions. The final topic evaluated was the sustainability of nitrogen, phosphorus and potassium used for microalgae growth. Results show that the surplus of world fertilizers cannot sustain large scale algae production in the United States. Technology choices that can recycle nutrients lower the overall requirement. Alternative sources of nutrients, like concentrated animal feeding operations, can provide enough nutrients for large scale production of algae.
106

Carbon Critical Masterplanning tool : klimatpåverkan från samhällsplaneringsprojekt

Prokofiev, Elias January 2014 (has links)
With the climate change issues growing in importance on the social agenda, the field of urban masterplanning is of no exception when it comes to minimizing the carbon footprint in a variety of projects. The aim of this thesis has been to prepare the Carbon Critical Masterplanning tool, a software plugin for carbon dioxide emissions assessment developed by Atkins, to be used in Swedish conditions. The main targets were to improve the areas of the tool associated with energy conversion and renewable energy sources, and to test the tool in a real case. A planned construction of a new campus in Albano, Stockholm was chosen for the pilot study. A 3D model was built in the tool and the carbon footprint was calculated for a variety of combinations for energy supply to the future area. The results show that use of locally installed renewable energy sources can reduce the total climate impact when life cycle perspective is applied. Largest reduction of emissions on an annual basis can be achieved by heat production from solar collectors and neighbourhood-scale biofuel plants. Masterplanning tool can be considered as a useful assistant during a masterplanning process, from creation of early sketches to detailed development plans. Depending on the project specifications, a certain degree of adjustment will however be needed in order to receive meaningful results. Development of the two large areas of the tool – emissions related to traffic and waste management, which are not covered by this thesis, are to be completed in order to obtain an overall view of the climate impact of masterplanning.
107

Material flows in the waterjet industry : an environmental perspective

Abbatelli, Daniele January 2014 (has links)
Abrasive Waterjet cutting (AWJ) presents many advantages over competing machining techniques, but several issues are related to the high volume of materials (and in particular of abrasive) used in the process. In this study, the environmental impact of the material flows in the abrasive waterjet industry has been analyzed adopting a life cycle perspective in order to individuate which phases place the largest burden on the environment. Moreover, three alternative abrasives (crushed rock, recycled glass and synthetic abrasive) and three disposal practices (in-site recycling, off-site recycling and recycling as construction material) have been also evaluated to estimate the benefits that can be achieved if these could be used in place of garnet abrasives and landfilling. The transportation of the abrasive resulted to be the phase that has the largest influence in every case and thus should be reduced as much as possible. For what concerns the alternative options, the usage of recycled glass and the in-site recycling of the abrasive were the two alternatives with the best environmental performances. However, crushed rock could be the best option for what concerns the global warming potential if carbon sequestration due to carbonation of silicate rocks is taken into account. Off-site recycling and recycling as construction material are good options only if the transportation to the recycling site can be reduced. Synthetic abrasive are instead found to have a much larger impact compared to every other alternative examined.
108

A platinum life cycle assessment : potential benefits to Anglo Platinum / I. Caddy.

Caddy, Irene January 2011 (has links)
There has been an increased awareness of the inter-dependence between man and the environment since the 1960’s. Environmental awareness has evolved from representing fairly radical views opposing all development, to a current emphasis on sustainable development between development and the environment. Life Cycle Assessment (LCA) is defined as the identification and quantification of the environmental impacts of a product, process or service during the entire life cycle being studied. The life cycle starts at the extraction of raw materials and the production of energy used to create the product through the use and final disposal of the product. LCA therefore considers the production, use and disposal of a product, which constitutes the life cycle of the product. LCA can be combined with methodologies that study other parameters such as costs in order to optimise the benefits from LCA. It is suggested that cost implications of processes to reduce environmental impacts should be included in a methodology used for a Platinum LCA. A comment that is consistently raised in the case studies is that the minerals industry regards LCA as an effective tool to determine the impacts of the industry, however extraction & beneficiation of minerals are often grouped together, with accurate data not being available, and databases either not available or not updated. The case studies indicated several benefits from the various LCA’s conducted. A Platinum LCA should clearly define and group the environmental impacts being studied into categories such as greenhouse gas emissions, global warming, acidification, and resource consumption. A Platinum LCA will be resource- and time intensive due to the large scale of the processes involved. It is suggested that a Platinum LCA firstly focuses on the production phase, i.e. cradle-to-gate, with potential future work done on the use and end-of-life stages. It is suggested that individual facility-based LCA’s for AMPLATS and other platinum producers are conducted in order to get a true reflection of the environmental burden of each company, and then selectively share technological improvements to reduce the environmental burden without disclosing sensitive information. The benefit of LCA in the case of platinum will be optimised if it can be used to make business decisions, together with consideration of financial and production benefits in addition to anticipated environmental benefits of alterations to processes. It is essential that LCA is seen as a business tool that will assist the company to make informed business decisions about process improvements, as well as new projects and design of new facilities. LCA on its own will not determine which product or process is the most cost effective or works best. The information developed in a LCA study should be used as one component of a more comprehensive decision making process assessing the trade-offs with cost and performance. The results from a LCA could be used to make informed decisions about optimisation between costs and reduced environmental impacts. / Thesis (M. Environmental Management)--North-West University, Potchefstroom Campus, 2011.
109

Embodied carbon for residential buildings : A life cycle assessment for concrete and wooden framed buildings

Grönvall, Stina, Lundquist, Matilda, Pedersen Bergli, Clara January 2014 (has links)
The consulting firm Atkins has developed a tool to help constructers plan urban areas but the tool is lacking data about embodied carbon in Sweden. The embodied carbon is the total carbon dioxide equivalents that are emitted from the material used in constructing a residential building as well as the energy used at the construction site and during demolition. In this thesis, the embodied carbon for a concrete framed building and a wooden framed building is calculated and presented. The mapping of embodied carbon for the two different framed buildings is done with a life cycle assessment perspective. In order to structure the studied system, the life cycle of the buildings is divided into three stages. The first stage includes data and calculations about the extraction and manufacturing of the most common building materials as well as the transportation to construction site. Stage 2 presents information about theon-site construction which includes, among other things, use of machines for constructing a residential building. In the third stage, data regarding demolition and end of life management are presented and calculated. All these three stages are added and a value for total embodied carbon for concrete framed residential buildings and wooden framed ones is presented in the result. The final result shows that the studied concrete framed residential building contains more embodied carbon than the wooden framed one. Further, stage 1 represents the largest part of embodied carbon, 87% for the concrete frame and 84% for the wooden frame, and stage 2 represents a very small part for both types of buildings, 1% for the concrete frame and 2% for the wooden fame.
110

A platinum life cycle assessment : potential benefits to Anglo Platinum / I. Caddy.

Caddy, Irene January 2011 (has links)
There has been an increased awareness of the inter-dependence between man and the environment since the 1960’s. Environmental awareness has evolved from representing fairly radical views opposing all development, to a current emphasis on sustainable development between development and the environment. Life Cycle Assessment (LCA) is defined as the identification and quantification of the environmental impacts of a product, process or service during the entire life cycle being studied. The life cycle starts at the extraction of raw materials and the production of energy used to create the product through the use and final disposal of the product. LCA therefore considers the production, use and disposal of a product, which constitutes the life cycle of the product. LCA can be combined with methodologies that study other parameters such as costs in order to optimise the benefits from LCA. It is suggested that cost implications of processes to reduce environmental impacts should be included in a methodology used for a Platinum LCA. A comment that is consistently raised in the case studies is that the minerals industry regards LCA as an effective tool to determine the impacts of the industry, however extraction & beneficiation of minerals are often grouped together, with accurate data not being available, and databases either not available or not updated. The case studies indicated several benefits from the various LCA’s conducted. A Platinum LCA should clearly define and group the environmental impacts being studied into categories such as greenhouse gas emissions, global warming, acidification, and resource consumption. A Platinum LCA will be resource- and time intensive due to the large scale of the processes involved. It is suggested that a Platinum LCA firstly focuses on the production phase, i.e. cradle-to-gate, with potential future work done on the use and end-of-life stages. It is suggested that individual facility-based LCA’s for AMPLATS and other platinum producers are conducted in order to get a true reflection of the environmental burden of each company, and then selectively share technological improvements to reduce the environmental burden without disclosing sensitive information. The benefit of LCA in the case of platinum will be optimised if it can be used to make business decisions, together with consideration of financial and production benefits in addition to anticipated environmental benefits of alterations to processes. It is essential that LCA is seen as a business tool that will assist the company to make informed business decisions about process improvements, as well as new projects and design of new facilities. LCA on its own will not determine which product or process is the most cost effective or works best. The information developed in a LCA study should be used as one component of a more comprehensive decision making process assessing the trade-offs with cost and performance. The results from a LCA could be used to make informed decisions about optimisation between costs and reduced environmental impacts. / Thesis (M. Environmental Management)--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0493 seconds