• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Life cycle energy consumption and environmental burdens associated with energy technologies and buildings

Jones, Craig I. January 2011 (has links)
This portfolio of published research contains nine papers and assesses the life cycle environmental burdens of energy technologies and buildings. Several analytical tools were used but these all fall under the umbrella of environmental life cycle assessment (LCA), and include energy analysis, carbon appraisal and the consideration of other environmental issues. The life cycle of all products starts with an assessment of embodied impacts. The current author has completed significant research on the embodied carbon of materials. This includes the creation of a leading embodied carbon database (the ICE database) for materials which has been downloaded by over 10,000 professionals and has made a significant contribution to knowledge. This portfolio of work includes analysis on methods for recycling in embodied impact assessment and LCA. This is an influential topic and therefore appears in two of the publications. The ICE database was applied by the current author to over 40 domestic building case studies and an embodied carbon model for buildings was created from these. The latter was used to provide benchmark values for six types of new houses in the UK.The portfolio of work then progresses to full LCA of energy systems. LCA is used to assess the embodied impacts versus operational impacts of 11 kV electrical cables. In this case embodied impacts were not significant and preference should be given to reducing electrical losses in the cables. The tool of LCA was then applied to a national electricity network. It revealed that Lebanon had a particularly poor centralised electricity network that was both unreliable and unsustainable with high impacts in all environmental categories. The final paper in this portfolio is on Building Integrated PV (BIPV) and brings together all aspects of the current author’s work and knowledge. It considers embodied burdens, electricity generation and BIPV can replace roofing materials.
2

Reducing the environmental impact of construction through use of geosynthetics

Raja, Jamil January 2016 (has links)
The changing climate and damaging effects of CO2 on the environment has led to awareness throughout the construction industry of the need to deliver more sustainable solutions. The use of geosynthetics as a sustainable construction solution was demonstrated by the Waste and Resources Action Programme (WRAP) in a report entitled Sustainable Geosystems in Civil Engineering Applications (WRAP, 2010). The WRAP report presented a series of case studies in which geosynthetic solutions provided both cost and CO2 savings in comparison to non-geosynthetic solutions. However, in what is a huge field the report concentrated on specific areas relative to the calculation methods or on the potential construction applications. This EngD research built on this work by WRAP and aimed to establish a rigorous framework for the comparison of CO2 emissions between geosynthetic and non-geosynthetic solutions. This EngD research reviewed CO2 calculation methodologies and techniques to produce a rigorous framework that could be adopted in comparative CO2 studies between geosynthetic and non-geosynthetic solutions. It was demonstrated on three case studies looking at geosynthetics in the function of containment, drainage, and reinforcement, highlighting the possible CO2 benefits of employing geosynthetics. The development of the case studies and framework highlighted the need for accurate embodied carbon data. There was an absence of geosynthetic specific embodied carbon values in the commonly employed databases. The EngD research sought to address this and through some experimental work in collaboration with geosynthetic manufacturers calculated embodied carbon values for four types of geosynthetics.
3

Embodied carbon for residential buildings : A life cycle assessment for concrete and wooden framed buildings

Grönvall, Stina, Lundquist, Matilda, Pedersen Bergli, Clara January 2014 (has links)
The consulting firm Atkins has developed a tool to help constructers plan urban areas but the tool is lacking data about embodied carbon in Sweden. The embodied carbon is the total carbon dioxide equivalents that are emitted from the material used in constructing a residential building as well as the energy used at the construction site and during demolition. In this thesis, the embodied carbon for a concrete framed building and a wooden framed building is calculated and presented. The mapping of embodied carbon for the two different framed buildings is done with a life cycle assessment perspective. In order to structure the studied system, the life cycle of the buildings is divided into three stages. The first stage includes data and calculations about the extraction and manufacturing of the most common building materials as well as the transportation to construction site. Stage 2 presents information about theon-site construction which includes, among other things, use of machines for constructing a residential building. In the third stage, data regarding demolition and end of life management are presented and calculated. All these three stages are added and a value for total embodied carbon for concrete framed residential buildings and wooden framed ones is presented in the result. The final result shows that the studied concrete framed residential building contains more embodied carbon than the wooden framed one. Further, stage 1 represents the largest part of embodied carbon, 87% for the concrete frame and 84% for the wooden frame, and stage 2 represents a very small part for both types of buildings, 1% for the concrete frame and 2% for the wooden fame.
4

A Framework for Benchmarking and Monitoring Building Construction Embodied Carbon Footprint using Building Information Models

Taveras Marte, Alba Olimpia 02 July 2014 (has links)
In recent years, the application of Life Cycle Assessment (LCA) databases has enabled architects/engineers to quantify the environmental impact of building materials for whole building analysis and comparative analyses of design alternatives. The application of building information modeling (BIM) has facilitated this process by providing designers and engineers with the detailed bill of materials required for LCA. However three limitations exist: First, LCA assessments have been limited to the design phase of a project delivery or post completion phase. Consequently, it does not help incentivize the choice of suppliers and delivery strategies that minimize the cradle-to-site impacts. Second, majority LCA tools ignore the impact of construction means and methods during the construction phase. Third, there is a lack of metrics and visualization tools that assess environmental impacts of decisions made during pre-construction and construction phase. As a result, little incentive exists for suppliers to provide embodied carbon footprint rates, and similarly, for contractors to balance project costs, schedule objectives with the corresponding environmental impact. To address these challenges, we propose and develop a new framework that applies BIM for reliable, effective benchmarking, monitoring, and visualization of embodied carbon footprint of construction projects. It comprises of a benchmarking module, and a monitoring and visualization module. In the experiments, this framework is implemented on concrete placement activities during the construction of the Center for the Arts facility at Virginia Tech. The developed framework can revolutionize construction by a) a rapid assessment and visualization of the deviations between expected and released carbon footprint, b) incentivizing contractors to request that manufacturers and suppliers gauge and share their carbon footprints as a part of contractor submittal process and c) incentivizing those construction firms that can complete their project with an overall carbon footprint rate lower than what is budgeted during the pre-construction or compared to the values from the design phase, while documenting and using the performance results as a benchmark for future similar projects. / Master of Science
5

A comparison between embodied and operational carbon in a building envelope from a life cycle perspective

Persson, Linnea January 2022 (has links)
Sweden’s building sector contributes over one third of the country’s total energy consumption and over a fifth of its greenhouse gas emissions. To achieve the energy and climate goals that have been adopted by the Parliament in Sweden, work must be done within this sector to reduce its climate impact. The climate impact of a building is generated both during its service life, known as operational carbon, and during the production and processing of materials before and after construction, referred to as embodied carbon. Historically, operational carbon has made a larger contribution to a building’s total climate impact, resulting in operational carbon being the focus for reducing a building’s total climate impact. However, with improvements in the energy mix and buildings becoming more energy efficient, the operational carbon has been reduced, causing the embodied carbon to contribute more considerably to a building’s total climate impact. A building’s envelope protects the environment within the building from outdoor conditions, thus maintaining a stable indoor climate that is comfortable for the occupants. The amount and type of materials used in the building envelope impact the building’s heat losses and gains. Consequently, the material types and amounts used influence the operational carbon as well as the embodied carbon. By adding wall and/or roof insulation, or improving the windows’ U-value, the operational carbon is reduced, while the embodied carbon increases. With insulation and window changes made to improve the building envelope and reduce heat losses, this study aimed to investigate whether there is a point at which the reduction in operational carbon no longer outweighs the increase in embodied carbon, i.e., a break-even point. This aim was achieved by using a reference building based on which in a number of different cases of insulation and window options the operational carbon was estimated using IDA ICE and embodied carbon was estimated using One Click LCA. The results showed that none of the studied cases reached a break-even point. The cases in which reaching a break-even point was closest were those in which PIR wall insulation and glass wool roof insulation were used. Each of the studied insulation cases followed the expected trend of reduced change in operational carbon nearing the increase in embodied carbon. The continued increase in insulation would be impacted by cost related benefits and limitations. / Den svenska byggsektorn står för över en tredjedel av landets totala energianvändning och en femtedel av dess växthusutsläpp. För att nå de energi- och klimatmål som har antagits i Sverige behöver byggsektorn göra krafttag för att reducera dess klimatpåverkan. En byggnads klimatpåverkan uppstår både under drifttiden, driftskedets klimatpåverkan, och under utvinning och bearbetning av material innan och efter byggnation, vilket benämns som inbyggd klimatpåverkan.  Historiskt har driftskedet haft större klimatpåverkan på en byggnads totala klimatpåverkan, vilket har gjort att driftsfasen har hamnat i fokus för att minska en byggnads totala klimatpåverkan. Emellertid har en förbättrad energimix och mer energieffektiva byggnader medverkat till att driftskedets klimatpåverkan har minskat, med resultatet att den inbyggda klimatpåverkan nu har en större inverkan på en byggnads totala klimatpåverkan. En byggnads klimatskal skyddar inomhusmiljön mot omgivningens förhållanden, vilket möjliggör bibehållandet av ett inomhusklimat som är behagligt för människorna som vistas i byggnaden. Mängden och typen av material som används i en byggnads klimatskal påverkar värmeförluster och tillförsel i byggnaden. Därmed påverkar materialmänger och typer både driftskedets och den inbyggda klimatpåverkan. Genom att öka vägg- och/eller takisoleringen eller förbättra fönster U-värdet minskar driftskedets klimatpåverkan samtidigt som den inbyggda klimatpåverkan ökar. Med förbättringarna i isolering och fönster som har gjorts för att förbättra klimatskalet och minska värmeförluster, har denna studie syftat till att utreda om minskningen i driftskedets klimatpåverkan fortfarande överstiger ökningen i inbyggd klimatpåverkan. Detta syfte uppnåddes genom att använda en referensbyggnad för att uppskatta driftskedets klimatpåverkan i IDA ICE och den inbyggda klimatpåverkan i One Click LCA.  Resultaten visade att alla studerade fall fortfarande hade en högre minskning i driftskedets klimatpåverkan jämfört med ökningen i inbyggd klimatpåverkan. De fall där minskningen i driftskedets klimatpåverkan var närmast att vara likställd med ökningen i inbyggd klimatpåverkan var för väggisolering av PIR och för takisolering av glasull.
6

Demolish or Refurbish an Existing Building? : A bachelor thesis on the climate impact of different methods of renewing a building

Lennermark, Desirée, Bjellerup, Victoria, Bäckström, Lisa, Wedman, Lisen January 2020 (has links)
The purpose of this bachelor thesis is to evaluate different alternatives of renewal regarding an already existing building. The case study building is located in the Ulleråker area in Uppsala, Sweden and is an old mental hospital building from the 1950’s which Uppsala Municipality wishes to restore as part of a bigger investment in the neighborhood. The different alternatives that will be investigated are refurbishment, with different insulation thickness, and a complete demolition and reconstruction of a new building with either wood or concrete. Carbon dioxide emissions connected to buildings will be calculated and analyzed as two elements, one being embodied carbon dioxide, and one being energy usage. Other aspects of interest, the economy and cultural values of the area, will be discussed. To estimate the amount of CO2 emissions, several life cycle assessments will be executed through the software One Click LCA (2015). Calculations will be done by hand in order to estimate the energy usage. Information and data are partly obtained from Uppsala Municipality, partly from literature and available resources. The results show that each option has a different advantage, the refurbishment resulting in considerably lower embodied carbon (114 kg CO2e/m2) but higher energy usage (95 kWh/m2 per year) as compared to the new concrete construction with larger amount of embodied carbon (279 kg CO2e/m2) but lower energy usage (44 kWh/m2 per year). This leads to a conclusion showing that a deep refurbishment is the best option regarding both embodied carbon and energy usage.
7

Développement d’une approche d’intégration des questions de morphologie urbaine dans l’évaluation environnementale des projets d’aménagement à l’échelle du quartier basée sur l’analyse de cycle de vie / Integration of morphological analysis in early-stage LCA of the built environment at the neighborhood scale

Lotteau, Marc 06 October 2017 (has links)
Ce travail est une contribution à l’évaluation environnementale des projets d’aménagements en phase amont de conception. Il porte plus spécifiquement sur l’intégration des questions de morphologie urbaine à l’analyse de cycle de vie (ACV) appliquée à l’environnement bâti à l’échelle du quartier. La performance énergétique des bâtiments est en partie conditionnée par les choix de conception en termes d’aménagement, et notamment par la forme urbaine (géométrie et types de surfaces) et ses interactions avec le climat. L’objectif de cette thèse est de proposer aux équipes de conception d’opérations d’aménagement un moyen de prendre en compte l’influence de la forme urbaine sur les potentiels énergétiques du quartier avec perspective cycle de vie.Une étude préalable a permis d’expliciter l’influence de la forme urbaine sur les potentiels énergétiques à l’échelle du quartier. Une approche de modélisation de l’énergie grise et de l’empreinte carbone des bâtiments est proposée, sur la base de laquelle une analyse de sensibilité à la forme urbaine et une analyse de contribution sont réalisées. Les résultats démontrent notamment l’influence primordiale de la forme des bâtiments ainsi qu’un lien très fort entre énergie grise et compacité du bâti. Une approche d’évaluation du potentiel de chauffage passif et du potentiel de confort d’été passif à l’échelle du quartier est également développée. Elle repose sur la réduction d’un quartier en quartier équivalent (réseau régulier de bâtiments parallélépipédiques), et sur l’application de métamodèles d’un moteur de simulation thermique. La méthode est testée est discutée sur un corpus de 45 cas d’étude. Ces développements méthodologiques ont vocation à être intégrés dans un outil existant d’ACV à l’échelle du quartier (NEST). / This work is a contribution to the environmental assessment of urban development projects in the upstream design phase. It focuses on integrating urban morphology issues with life cycle analysis (LCA) applied to the built environment at the neighborhood scale. The energy performance of buildings is partly determined by design choices relating to the urban form and its interactions with climate. The objective of this thesis is to provide to the design teams a way to take into account the influence of the urban form on the energy potentials of a neighborhood with a life cycle perspective.A preliminary study was conducted on two neighborhoods to detail the influence of the urban form on their energy potentials. An approach to modeling the embodied energy and embodied carbon of buildings is proposed. A sensitivity analysis and a contribution analysis of this model are performed on two generic building shapes. The results demonstrate the key influence of the shape of the buildings and a very strong link between the embodied energy and the building’s compactness. An approach to assessing the passive heating potential and passive summer comfort potential at the neighborhood scale is also developed. It is based on the transformation of a neighborhood in an equivalent urban form (regular array of block buildings), and on the application of metamodels of a thermal simulation engine. The method is tested and discussed on a corpus of 45 case studies. These methodological developments are intended to be integrated into an existing tool for neighborhood LCA (NEST).
8

Embodied carbon and waste generation of building refurbishment : Case studies of office fit out in Sweden / Inbyggd kol och avfallsgenerering vid renovering av byggnader : Fallstudier av hyresgästanpassning i kontorsbyggnader i Sverige

Budiyani, Ansheila Gabriela January 2023 (has links)
Buildings contribute to various environmental impacts. Office fit out, as a type of refurbishment in the building life cycle, tends to recur often and is resource-intensive. Still few studies have researched the topic. Through four fit out case studies in offices in Sweden, this study investigates the impacts of office fit out by calculating the waste generation and embodied carbon of fit out. The results show that the waste generation and embodied carbon for each case study projects was 31-38 kg/m2 refurbished GFA and 93-96 kg CO2e/m2 refurbished GFA. Over time, the accumulated recurring embodied carbon of fit out can surpass the initial embodied carbon of the building when no improvement for embodied carbon reductions is made. Scenarios modelling explores how prolonging fit out recurrency and incorporating circular methods to the practice could reduce the accumulation of embodied carbon of fit out. According to the results, recommendations for the actors involved are proposed and methodological reflections are presented. This study provides an overview and initial understanding of the impacts of fit out from real-life cases to help identify what can be done to reduce environmental impacts. / Byggnader bidrar till olika typer av miljöpåverkan. Hyresgästanpassning i kontorsbyggnader är en typ av renovering under en byggnads livscykel som tenderar att upprepas många gånger och är resurskrävande. Trots det är det få studier som än så länge har undersökt ämnet. Genom fyra fallstudier av hyresgästanpassningsprojekt i kontorsbyggnader i Sverige studeras effekterna av hyresgästanpassning genom att beräkna generering av avfall och inbyggd klimatpåverkan (eng. embodied carbon). Resultaten visar att för de fyra fallstudierna genereras avfall i omfattningen 31-38 kg/m2 renoverad BTA och inbyggd klimatpåverkan i omfattningen 93-96 kg CO2e/m2 renoverad BTA. Över tid kan den ackumulerade inbyggda klimatpåverkan av återkommande hyresgästanpassningsprojekt överskrida byggnadens initiala inbyggda klimatpåverkan när inga strategier för att minska inbyggd klimatpåverkan tillämpas i projekten. Modellering av ett antal scenarier undersökte hur en lägre frekvens av återkommande hyresgästanpassningsprojekt och införlivning av cirkulära strategier kan minska ackumuleringen av inbyggd klimatpåverkan över byggnadens livscykel. Baserat på studiens resultat föreslås rekommendationer till berörda aktörer och reflektioner som rör beräkningsmetoden presenteras. Den här studien ger en översiktlig förståelse av klimatpåverkan av hyresgästanpassning i kontorsbyggnader från verkliga fallstudier, vilket kan bidra med att identifiera vad som kan göras för att minska miljöpåverkan.
9

Förbättringsåtgärder i dagens livscykelanalysarbete : En studie av två programvaror / En studie av två programvaror : A study of two softwares

Nilsson, Per, Norrman, Joel January 2017 (has links)
Syfte: För nybyggda hus står den inbyggda koldioxiden för en allt större andel av byggnadens klimatpåverkan under livscykeln. Detta på grund av bättre klimatskal och driftsystem. Forskningsrapporter visar att klimatpåverkan i form av inbyggd koldioxid kan minska om digitala analysverktyg används i projekteringen. Syftet med den här rapporten är att undersöka hur analyserna går till samt hur de kan bli enklare och mer noggranna. Metod: För att uppfylla syftet används en litteraturstudie och semistrukturerade intervjuer för att kartlägga användningen av LCA för att dra lärdomar och se förbättringsmöjligheter. En fallstudie görs på en betong- och stålstomme för att jämföra och dra slutsatser utav två LCA-verktyg; Anavitor och Bidcon. Resultat: Resultatet visar att intresset för LCA i byggbranschen är stigande och att de analyser som utförs i projekteringsskedet oftast baseras på generiska värden. Avseende olika programvaror måste omfattningen av programvaran vara tydligt definierad för att kunna få fram ett jämförbart resultat. För att ge ett resultat som speglar det verkliga utfallet måste man frångå den generiska data som tillhandahålls, och istället mata in materialspecifika värden som kommer direkt från tillverkare. Detta kan redan vid projekteringsskedet vara möjligt om BIM-objekt förses med EPD:er i kompatibla filformat. Konsekvenser: Byggnadens totala klimatpåverkan under livscykeln kan tydliggöras med hjälp av LCA-verktyg. För att det ska bli en naturlig del av projekteringen är det viktigt att LCA-verktyg är kompatibla med den information som finns i en eventuell modell. LCA-verktyg bör innehålla mer information än bara klimatpåverkan, även annan miljödata och eventuell ekonomisk information bör finnas för att ge ett bra beslutsunderlag för beställaren. För att öka användningen av LCA i byggbranschen krävs starkare incitament för att göra analyser till exempel att beställaren måste miljödeklarera byggnaden. I ett längre perspektiv borde krav ställas på en byggnads miljöpåverkan liknande de krav som finns i BBR angående energianvändning. Noggrannheten i programmet beror till största del på den data som användaren matar in. Det vill säga mängder, ofta hämtade från en modell. Det krävs att EPD:er görs tillgängliga i filformat som stöds av digitala programvaror för att enklare kunna nå deninformation som krävs. LCA-verktyg ska kunna användas tidigt i ett projekt för att eventuella val lättare ska kunna göras. Samtidigt så bör programanvändaren kunna använda produktspecifika EPD:er i ett tidigt skede för att kunna jämföra olika leverantörer och konstruktionslösningar. Begränsningar: Detta arbete är begränsat till de två programmen Bidcon och Anavitoroch hur de skiljer sig åt avseende beräkningsmetoder och funktioner. Det är ocksåavgränsat för att endast beröra byggnaders inbyggda material. Nyckelord: "Inbyggd koldioxid", "Inbyggd energi", "koldioxidavtryck", "LCA","Livscykelanalys", "Klimatpåverkan", "Klimatdata", "BIM", ”Anavitor”, ”Bidcon” / Purpose: For newly constructed buildings, embodied carbon dioxide stands for an increasing share of the buildings climate impact, seen from a life cycle perspective. This due to improved building envelopes alongside better building service systems. Research shows climate impact due to embodied carbon dioxide may decrease if digital tools for analysis are used during the design phase. The aim with this report is to examine how these analyses are made and see how they can be simplified as well as more accurate. Method: To fulfil the aim of this report a literature review is used alongside semistructured interviews to map the use of LCA (Life Cycle Assessment) in order to gain knowledge and find opportunities for enhancement. A case study is performed on a building frame of concrete and steel to be able to compare and draw conclusions from two LCA-tools; Anavitor and Bidcon. Findings: The result shows increasing interest for LCA in the building industry and that LCA performed in the design phase often uses generic values. The terms and scope of a LCA needs to be determined distinctly regarding comparison of different software's in order to reach a result that is comparable. There is a need to depart from generic values and replace with climate data from manufactures to reach a result reflecting reality. This would be possible already in the design phase using objects in BIM supplemented with climate data from EPD:s in compatible formats. Implications: The buildings total climate impact during the life cycle are able to be displayed with LCA-tools. Using this as a natural part of the design phase, LCA-tools have to be compatible with the information contained in an eventual model. LCA-tools ought to include more information than just climate impact, other environmental data and economic information ought to be included to provide a better decision ground for the buyer. To increase the use of LCA in the building industry, a stronger incentive is needed. The buyer should be required to perform an environmental declaration of thebuilding. In a further step legislation regarding a building´s environmental impactsimilar to the rules found in the Swedish building code regarding specific energy usewould be fitting. The accuracy of the programs mostly depends on the input data,namely quantities, often retrieved from a model. Requires EPD:s accessible in formatsupported by digital software’s in order to reach that information more easily. LCA tools ought to be used early in a project, facilitate eventual choices. At the same time, the user should be able to use product specific EPD:s in an early stage to compare different manufacturers and solutions. Limitations: This paper is limited to the two software’s Bidcon and Anavitor, and how they differ regarding calculation methods and functions. It's also limited to only take the buildings' embedded materials into account. Keywords: "Embodied carbon dioxide", "Embodied energy", "carbon foot print","LCA", "Life Cycle assessment", "Climate impact", "Climate data", "BIM", “Anavitor,“Bidcon”

Page generated in 0.0635 seconds