• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Change point estimation in noisy Hammerstein integral equations / Sprungstellen-Schätzer für verrauschte Hammerstein Integral Gleichungen

Frick, Sophie 02 December 2010 (has links)
No description available.
12

Détection de l’invalidité et estimation d’un effet causal en présence d’instruments invalides dans un contexte de randomisation mendélienne

Boucher-Roy, David 08 1900 (has links)
La randomisation mendélienne est une méthode d’instrumentation utilisant des instruments de nature génétique afin d’estimer, via par exemple la régression des moindres carrés en deux étapes, une relation de causalité entre un facteur d’exposition et une réponse lorsque celle-ci est confondue par une ou plusieurs variables de confusion non mesurées. La randomisation mendélienne est en mesure de gérer le biais de confusion à condition que les instruments utilisés soient valides, c’est-à-dire qu’ils respectent trois hypothèses clés. On peut généralement se convaincre que deux des trois hypothèses sont satisfaites alors qu’un phénomène génétique, la pléiotropie, peut parfois rendre la troisième hypothèse invalide. En présence d’invalidité, l’estimation de l’effet causal de l’exposition sur la réponse peut être sévèrement biaisée. Afin d’évaluer la potentielle présence d’invalidité lorsqu’un seul instrument est utilisé, Glymour et al. (2012) ont proposé une méthode qu’on dénomme ici l’approche de la différence simple qui utilise le signe de la différence entre l’estimateur des moindres carrés ordinaires de la réponse sur l’exposition et l’estimateur des moindres carrés en deux étapes calculé à partir de l’instrument pour juger de l’invalidité de l’instrument. Ce mémoire introduit trois méthodes qui s’inspirent de cette approche, mais qui sont applicables à la randomisation mendélienne à instruments multiples. D’abord, on introduit l’approche de la différence globale, une simple généralisation de l’approche de la différence simple au cas des instruments multiples qui a comme objectif de détecter si un ou plusieurs instruments utilisés sont invalides. Ensuite, on introduit les approches des différences individuelles et des différences groupées, deux méthodes qui généralisent les outils de détection de l’invalidité de l’approche de la différence simple afin d’identifier des instruments potentiellement problématiques et proposent une nouvelle estimation de l’effet causal de l’exposition sur la réponse. L’évaluation des méthodes passe par une étude théorique de l’impact de l’invalidité sur la convergence des estimateurs des moindres carrés ordinaires et des moindres carrés en deux étapes et une simulation qui compare la précision des estimateurs résultant des différentes méthodes et leur capacité à détecter l’invalidité des instruments. / Mendelian randomization is an instrumentation method that uses genetic instruments to estimate, via two-stage least squares regression for example, a causal relationship between an exposure and an outcome when the relationship is confounded by one or more unmeasured confounders. Mendelian randomization can handle confounding bias provided that the instruments are valid, i.e., that they meet three key assumptions. While two of the three assumptions can usually be satisfied, the third assumption is often invalidated by a genetic phenomenon called pleiotropy. In the presence of invalid instruments, the estimate of the causal effect of exposure on the outcome may be severely biased. To assess the potential presence of an invalid instrument in single-instrument studies, Glymour et al. (2012) proposed a method, hereinafter referred to as the simple difference approach, which uses the sign of the difference between the ordinary least squares estimator of the outcome on the exposure and the two-stage least squares estimator calculated using the instrument. Based on this approach, we introduce three methods applicable to Mendelian randomization with multiple instruments. The first method is the global difference approach and corresponds to a simple generalization of the simple difference approach to the case of multiple instruments that aims to detect whether one or more instruments are invalid. Next, we introduce the individual differences and the grouped differences approaches, two methods that generalize the simple difference approach to identify potentially invalid instruments and provide new estimates of the causal effect of the exposure on the outcome. The methods are evaluated using a theoretical investigation of the impact that invalid instruments have on the convergence of the ordinary least squares and two-stage least squares estimators as well as with a simulation study that compares the accuracy of the respective estimators and the ability of the corresponding methods to detect invalid instruments.
13

Processamento de erros grosseiros através do índice de não-detecção de erros e dos resíduos normalizados / Bad data processing through the undetectability index and the normalized residuals

Vieira, Camila Silva 20 October 2017 (has links)
Esta dissertação trata do problema de processamento de Erros Grosseiros (EGs) com base na aplicação do chamado Índice de Não-Detecção de Erros, ou apenas UI (Undetectability Index), na análise dos resíduos do estimador de estado por mínimos quadrados ponderados. O índice UI foi desenvolvido recentemente e possibilita a classificação das medidas de acordo com as suas características de não refletirem grande parcela de seus erros nos resíduos daquele estimador. As medidas com maiores UIs são aquelas cujos erros são mais difíceis de serem detectados através de métodos que fazem uso da análise dos resíduos, pois grande parcela do erro dessas medidas não aparece no resíduo. Inicialmente demonstrou-se, nesta dissertação, que erros das estimativas das variáveis de estado em um sistema com EG não-detectável (em uma medida de alto índice UI) podem ser mais significativos que em medidas com EGs detectáveis (em medidas com índices UIs baixos). Justificando, dessa forma, a importância de estudos para tornar possível o processamento de EGs em medidas com alto índice UI. Realizou-se, então, nesta dissertação, diversas simulações computacionais buscando analisar a influência de diferentes ponderações de medidas no UI e também nos erros das estimativas das variáveis de estado. Encontrou-se, então, uma maneira que destacou-se como a mais adequada para ponderação das medidas. Por fim, ampliaram-se, nesta dissertação, as pesquisas referentes ao UI para um estimador de estado por mínimos quadrados ponderados híbrido. / This dissertation deals with the problem of Gross Errors processing based on the use of the so-called Undetectability Index, or just UI. This index was developed recently and it is capable to classify the measurements according to their characteristics of not reflecting their errors into the residuals of the weighted least squares state estimation process. Gross errors in measurements with higher UIs are very difficult to be detected by methods based on the residual analysis, as the errors in those measurements are masked, i.e., they are not reflected in the residuals. Initially, this dissertation demonstrates that a non-detectable gross error (error in a measurement with high UI) may affect more the accuracy of the estimated state variables than a detectable gross error (error in a measurement with low UI). Therefore, justifying the importance of studies that make possible gross errors processing in measurements with high UI. In this dissertation, several computational simulations are carried out to analyze the influence of different weights of measurements in the UI index and also in the accuracy of the estimated state variables. It is chosen a way that stood out as the most appropriate for weighing the measurements. Finally, in this dissertation, the studies referring to the UI is extended for a hybrid weighted least squares state estimator.
14

Processamento de erros grosseiros através do índice de não-detecção de erros e dos resíduos normalizados / Bad data processing through the undetectability index and the normalized residuals

Camila Silva Vieira 20 October 2017 (has links)
Esta dissertação trata do problema de processamento de Erros Grosseiros (EGs) com base na aplicação do chamado Índice de Não-Detecção de Erros, ou apenas UI (Undetectability Index), na análise dos resíduos do estimador de estado por mínimos quadrados ponderados. O índice UI foi desenvolvido recentemente e possibilita a classificação das medidas de acordo com as suas características de não refletirem grande parcela de seus erros nos resíduos daquele estimador. As medidas com maiores UIs são aquelas cujos erros são mais difíceis de serem detectados através de métodos que fazem uso da análise dos resíduos, pois grande parcela do erro dessas medidas não aparece no resíduo. Inicialmente demonstrou-se, nesta dissertação, que erros das estimativas das variáveis de estado em um sistema com EG não-detectável (em uma medida de alto índice UI) podem ser mais significativos que em medidas com EGs detectáveis (em medidas com índices UIs baixos). Justificando, dessa forma, a importância de estudos para tornar possível o processamento de EGs em medidas com alto índice UI. Realizou-se, então, nesta dissertação, diversas simulações computacionais buscando analisar a influência de diferentes ponderações de medidas no UI e também nos erros das estimativas das variáveis de estado. Encontrou-se, então, uma maneira que destacou-se como a mais adequada para ponderação das medidas. Por fim, ampliaram-se, nesta dissertação, as pesquisas referentes ao UI para um estimador de estado por mínimos quadrados ponderados híbrido. / This dissertation deals with the problem of Gross Errors processing based on the use of the so-called Undetectability Index, or just UI. This index was developed recently and it is capable to classify the measurements according to their characteristics of not reflecting their errors into the residuals of the weighted least squares state estimation process. Gross errors in measurements with higher UIs are very difficult to be detected by methods based on the residual analysis, as the errors in those measurements are masked, i.e., they are not reflected in the residuals. Initially, this dissertation demonstrates that a non-detectable gross error (error in a measurement with high UI) may affect more the accuracy of the estimated state variables than a detectable gross error (error in a measurement with low UI). Therefore, justifying the importance of studies that make possible gross errors processing in measurements with high UI. In this dissertation, several computational simulations are carried out to analyze the influence of different weights of measurements in the UI index and also in the accuracy of the estimated state variables. It is chosen a way that stood out as the most appropriate for weighing the measurements. Finally, in this dissertation, the studies referring to the UI is extended for a hybrid weighted least squares state estimator.
15

Approximation of Terrain Data Utilizing Splines / Approximation of Terrain Data Utilizing Splines

Tomek, Peter January 2012 (has links)
Pro optimalizaci letových trajektorií ve velmi malé nadmorské výšce, terenní vlastnosti musí být zahrnuty velice přesne. Proto rychlá a efektivní evaluace terenních dat je velice důležitá vzhledem nato, že čas potrebný pro optimalizaci musí být co nejkratší. Navyše, na optimalizaci letové trajektorie se využívájí metody založené na výpočtu gradientu. Proto musí být aproximační funkce terenních dat spojitá do určitého stupne derivace. Velice nádejná metoda na aproximaci terenních dat je aplikace víceroměrných simplex polynomů. Cílem této práce je implementovat funkci, která vyhodnotí dané terenní data na určitých bodech spolu s gradientem pomocí vícerozměrných splajnů. Program by měl vyčíslit více bodů najednou a měl by pracovat v $n$-dimensionálním prostoru.
16

[pt] ESTIMAÇÃO DE MODELOS NÃO-LINEARES BASEADOS EM CONDIÇÕES DE MOMENTO / [en] MOMENT-BASED ESTIMATION OF NONLINEAR MODELS

DANILO CAIANO DELGADO 10 July 2020 (has links)
[pt] O objetivo desta dissertação é comparar através de um estudo de simulação diferentes estimadores de modelos não-lineares. Nós consideramos neste trabalho o estimador não-linear de mínimos quadrados em dois estágios (NL2SLS), o estimador não-linear de máxima verossimilhança de informação limitada (LIML) e o estimador com função controle (CF). Os resultados mostram que os estimadores CF e LIML possuem em geral uma performance superior ao do NL2SLS para os modelos selecionados. O trabalho considera uma aplicação de uma Curva de Phillips não-linear para a Economia Brasileira. / [en] The aim of this dissertation is to compare, in a simulation study, different nonlinear estimators for selected models. We consider the two-stage nonlinear least-squares (NL2SLS), the nonlinear limited information maximum likelihood (LIML), and the control function (CF) estimator. Our results show that usually either CF or LIML estimators perform better than the NL2SLS estimator for the selected models. In an application with real data, we consider the estimation a nonlinear Phillips Curve for Brazilian economy.

Page generated in 0.0925 seconds