• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 15
  • 14
  • 13
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A 3-year lifestyle intervention in primary health care effects on physical activity, cardiovascular risk factors, quality of life and cost-effectiveness /

Eriksson, Kerstin Margareta, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
32

Behavior change techniques for increasing physical activity in cancer survivors: a systematic review and meta-analysis of randomized controlled trials

Finne, Emily, Glausch, Melanie, Exner, Anne-Kathrin, Sauzet, Odile, Stölzel, Friederike, Seidel, Nadja 26 April 2019 (has links)
Purpose: The purpose of this systematic review and meta-analysis is to investigate how physical activity (PA) can be effectively promoted in cancer survivors. The effect of PA-promoting interventions in general, behavior change techniques (BCTs), and further variables as moderators in particular are evaluated. Methods: This study included randomized controlled trials of lifestyle interventions aiming at an increase in PA that can be carried out independently at home, published by December 2016, for adults diagnosed with cancer after completion of the main treatment. Primary outcomes were subjective and objective measures of PA prior to and immediately after the intervention. Meta-analysis and meta-regression were used to estimate effect sizes (ES) in terms of standardized mean differences, variation between ES in terms of heterogeneity indices (I2), and moderator effects in terms of regression coefficients. Results: This study included 30 studies containing 45 ES with an overall significant small positive effect size of 0.28 (95% confidence interval=0.18–0.37) on PA, and I2=54.29%. The BCTs Prompts, Reduce prompts, Graded tasks, Non-specific reward, and Social reward were significantly related to larger effects, while Information about health consequences and Information about emotional consequences, as well as Social comparison were related to smaller ES. The number of BCTs per intervention did not predict PA effects. Interventions based on the Theory of Planned Behavior were associated with smaller ES, and interventions with a home-based setting component were associated with larger ES. Neither the duration of the intervention nor the methodological quality explained differences in ES. Conclusion: Certain BCTs were associated with an increase of PA in cancer survivors. Interventions relying on BCTs congruent with (social) learning theory such as using prompts and rewards could be especially successful in this target group. However, large parts of between-study heterogeneity in ES remained unexplained. Further primary studies should directly compare specific BCTs and their combinations.
33

Effects of a Lifestyle Intervention on Change in Body Composition in Prostate Cancer Patients Undergoing Androgen Deprivation Therapy

Chaplow, Zachary Lewis 24 August 2018 (has links)
No description available.
34

Pharmacometrics Modelling in Type 2 Diabetes Mellitus : Implications on Study Design and Diabetes Disease Progression

Ghadzi, Siti Maisharah Sheikh January 2017 (has links)
Pharmacometric modelling is widely used in many aspects related to type 2 diabetes mellitus (T2DM), for instance in the anti-diabetes drug development, and in quantifying the disease progression of T2DM. The aim of this thesis were to improve the design of early phase anti-diabetes drug development studies with the focus on the power to identify mechanism of drug action (MoA), and to characterize and quantify the progression from prediabetes to overt diabetes, both the natural progression and the progression with diet and exercise interventions, using pharmacometrics modelling. The appropriateness of a study design depends on the MoAs of the anti-hyperglycaemic drug. Depending on if the focus is power to identify drug effect or accuracy and precision of drug effect, the best design will be different. Using insulin measurements on top of glucose has increase the power to identify a correct drug effect, distinguish a correct MoA from the incorrect, and to identify a secondary MoA in most cases. The accuracy and precision of drug parameter estimates, however, was not affected by insulin. A natural diabetes disease progression model was successfully added in a previously developed model to describe parameter changes of glucose and insulin regulation among impaired glucose tolerance (IGT) subjects, with the quantification of the lifestyle intervention. In this model, the assessment of multiple short-term provocations was combined to predict the long-term disease progression, and offers apart from the assessment of the onset of T2DM also the framework for how to perform similar analysis. Another previously published model was further developed to characterize the weight change in driving the changes in glucose homeostasis in subjects with IGT. This model includes the complex relationship between dropout from study and weight and glucose changes. This thesis has provided a first written guidance in designing a study for pharmacometrics analysis when characterizing drug effects, for early phase anti-diabetes drug development. The characterisation of the progression from prediabetes to overt diabetes using pharmacometrics modelling was successfully performed. Both the natural progression and the progression with diet and exercise interventions were quantified in this thesis.
35

An Examination of Maternal Contributors and Potential Modifiers of Fetal Growth in Pregnancy

Ferraro, Zachary Michael 01 May 2012 (has links)
A greater understanding of critical periods of body weight regulation, including pregnancy, may aid in efforts to optimize weight management strategies for the mother and her baby. The gestational period has been implicated to play, in the child, a vital role in the developmental origins of obesity and other cardiometabolic diseases later in life. Therefore, we initially examined existing literature on the role of maternal obesity and its link to pediatric obesity and documented the known underlying physiological mechanisms responsible for this relationship while suggesting potential intervention targets that may improve maternal-fetal outcomes. In a second paper, we aimed to quantify maternal predictors of large for gestational age (LGA) neonates in the Ottawa and Kingston (OaK) birth cohort with specific hypotheses verifying the independent contribution of maternal prepregnancy body mass index (BMI) and excessive gestational weight gain (GWG) to fetal overgrowth. This paper also highlights the clinical utility of the revised 2009 Institute of Medicine GWG guidelines and discusses the potential role of physiological factors underlying the observed associations between BMI, excessive GWG and LGA neonates. As a follow-up to our population-level analysis (i.e., OAK cohort), papers three and four highlight how the insulin-like growth factor (IGF) axis, a vital regulator of growth and development, may be compromised at the molecular level in cases of maternal obesity (paper 3) and excessive GWG (paper 4). In paper 3 we show that maternal obesity is associated with attenuated expression of IGF binding protein-4 (IGFBP4) in umbilical cord blood and discuss how this may preferentially promote fetal adipogenesis. The effects of excessive GWG on IGF axis protein expression are addressed in paper four where we show that excessive weight gain during pregnancy is associated with increased expression of IGFBP3 in maternal circulation in normoglycemic term pregnancies. In this paper we discuss the potential inhibitory role of IGFBP3 on adipogenesis and how it relates to glucose intolerance during pregnancy. Recognizing that both obesity and excessive GWG can alter physiological processes in mother and her baby, appropriate evidence-based interventions are warranted to best optimize outcomes. In paper five, we discuss the results of a study which sought to assess patient information channels and knowledge of nutrition and physical activity during pregnancy with the intent that these findings be applied to best design efficacious strategies that cater to the needs of our target group of pregnant women. In our analysis we show that the majority of pregnant women studied would be willing to participate in a lifestyle intervention for their own personal health and that of their child. Of great interest was the observation that most women were not informed of the importance of pregnancy-specific energy intake, or made aware of their own healthy GWG targets. Additionally, many of the respondents reported receiving no information pertaining to appropriate physical activity recommendations; despite the fact that the vast majority of participants consider this lifestyle modality to be safe during their pregnancy. Finally in paper six, we build on the results of our previous work and evaluate the risks and benefits of physical activity during pregnancy on maternal-fetal outcomes through a review of the literature and note that engaging in non-sedentary pursuits during gestation may aid in maternal weight regulation, protect against metabolic disorders and optimize neonatal birth weight and body composition. Overall, the collective nature of the papers presented in this dissertation provides qualitative and quantitative evidence to support not only the complexity of body weight regulation in the mother and her baby, but also highlights potential avenues for intervention that may improve maternal-fetal outcomes during this critical period.
36

An Examination of Maternal Contributors and Potential Modifiers of Fetal Growth in Pregnancy

Ferraro, Zachary Michael 01 May 2012 (has links)
A greater understanding of critical periods of body weight regulation, including pregnancy, may aid in efforts to optimize weight management strategies for the mother and her baby. The gestational period has been implicated to play, in the child, a vital role in the developmental origins of obesity and other cardiometabolic diseases later in life. Therefore, we initially examined existing literature on the role of maternal obesity and its link to pediatric obesity and documented the known underlying physiological mechanisms responsible for this relationship while suggesting potential intervention targets that may improve maternal-fetal outcomes. In a second paper, we aimed to quantify maternal predictors of large for gestational age (LGA) neonates in the Ottawa and Kingston (OaK) birth cohort with specific hypotheses verifying the independent contribution of maternal prepregnancy body mass index (BMI) and excessive gestational weight gain (GWG) to fetal overgrowth. This paper also highlights the clinical utility of the revised 2009 Institute of Medicine GWG guidelines and discusses the potential role of physiological factors underlying the observed associations between BMI, excessive GWG and LGA neonates. As a follow-up to our population-level analysis (i.e., OAK cohort), papers three and four highlight how the insulin-like growth factor (IGF) axis, a vital regulator of growth and development, may be compromised at the molecular level in cases of maternal obesity (paper 3) and excessive GWG (paper 4). In paper 3 we show that maternal obesity is associated with attenuated expression of IGF binding protein-4 (IGFBP4) in umbilical cord blood and discuss how this may preferentially promote fetal adipogenesis. The effects of excessive GWG on IGF axis protein expression are addressed in paper four where we show that excessive weight gain during pregnancy is associated with increased expression of IGFBP3 in maternal circulation in normoglycemic term pregnancies. In this paper we discuss the potential inhibitory role of IGFBP3 on adipogenesis and how it relates to glucose intolerance during pregnancy. Recognizing that both obesity and excessive GWG can alter physiological processes in mother and her baby, appropriate evidence-based interventions are warranted to best optimize outcomes. In paper five, we discuss the results of a study which sought to assess patient information channels and knowledge of nutrition and physical activity during pregnancy with the intent that these findings be applied to best design efficacious strategies that cater to the needs of our target group of pregnant women. In our analysis we show that the majority of pregnant women studied would be willing to participate in a lifestyle intervention for their own personal health and that of their child. Of great interest was the observation that most women were not informed of the importance of pregnancy-specific energy intake, or made aware of their own healthy GWG targets. Additionally, many of the respondents reported receiving no information pertaining to appropriate physical activity recommendations; despite the fact that the vast majority of participants consider this lifestyle modality to be safe during their pregnancy. Finally in paper six, we build on the results of our previous work and evaluate the risks and benefits of physical activity during pregnancy on maternal-fetal outcomes through a review of the literature and note that engaging in non-sedentary pursuits during gestation may aid in maternal weight regulation, protect against metabolic disorders and optimize neonatal birth weight and body composition. Overall, the collective nature of the papers presented in this dissertation provides qualitative and quantitative evidence to support not only the complexity of body weight regulation in the mother and her baby, but also highlights potential avenues for intervention that may improve maternal-fetal outcomes during this critical period.
37

An Examination of Maternal Contributors and Potential Modifiers of Fetal Growth in Pregnancy

Ferraro, Zachary Michael January 2012 (has links)
A greater understanding of critical periods of body weight regulation, including pregnancy, may aid in efforts to optimize weight management strategies for the mother and her baby. The gestational period has been implicated to play, in the child, a vital role in the developmental origins of obesity and other cardiometabolic diseases later in life. Therefore, we initially examined existing literature on the role of maternal obesity and its link to pediatric obesity and documented the known underlying physiological mechanisms responsible for this relationship while suggesting potential intervention targets that may improve maternal-fetal outcomes. In a second paper, we aimed to quantify maternal predictors of large for gestational age (LGA) neonates in the Ottawa and Kingston (OaK) birth cohort with specific hypotheses verifying the independent contribution of maternal prepregnancy body mass index (BMI) and excessive gestational weight gain (GWG) to fetal overgrowth. This paper also highlights the clinical utility of the revised 2009 Institute of Medicine GWG guidelines and discusses the potential role of physiological factors underlying the observed associations between BMI, excessive GWG and LGA neonates. As a follow-up to our population-level analysis (i.e., OAK cohort), papers three and four highlight how the insulin-like growth factor (IGF) axis, a vital regulator of growth and development, may be compromised at the molecular level in cases of maternal obesity (paper 3) and excessive GWG (paper 4). In paper 3 we show that maternal obesity is associated with attenuated expression of IGF binding protein-4 (IGFBP4) in umbilical cord blood and discuss how this may preferentially promote fetal adipogenesis. The effects of excessive GWG on IGF axis protein expression are addressed in paper four where we show that excessive weight gain during pregnancy is associated with increased expression of IGFBP3 in maternal circulation in normoglycemic term pregnancies. In this paper we discuss the potential inhibitory role of IGFBP3 on adipogenesis and how it relates to glucose intolerance during pregnancy. Recognizing that both obesity and excessive GWG can alter physiological processes in mother and her baby, appropriate evidence-based interventions are warranted to best optimize outcomes. In paper five, we discuss the results of a study which sought to assess patient information channels and knowledge of nutrition and physical activity during pregnancy with the intent that these findings be applied to best design efficacious strategies that cater to the needs of our target group of pregnant women. In our analysis we show that the majority of pregnant women studied would be willing to participate in a lifestyle intervention for their own personal health and that of their child. Of great interest was the observation that most women were not informed of the importance of pregnancy-specific energy intake, or made aware of their own healthy GWG targets. Additionally, many of the respondents reported receiving no information pertaining to appropriate physical activity recommendations; despite the fact that the vast majority of participants consider this lifestyle modality to be safe during their pregnancy. Finally in paper six, we build on the results of our previous work and evaluate the risks and benefits of physical activity during pregnancy on maternal-fetal outcomes through a review of the literature and note that engaging in non-sedentary pursuits during gestation may aid in maternal weight regulation, protect against metabolic disorders and optimize neonatal birth weight and body composition. Overall, the collective nature of the papers presented in this dissertation provides qualitative and quantitative evidence to support not only the complexity of body weight regulation in the mother and her baby, but also highlights potential avenues for intervention that may improve maternal-fetal outcomes during this critical period.

Page generated in 0.1415 seconds