Spelling suggestions: "subject:"light manipulation"" "subject:"might manipulation""
1 |
Plasmonic Manipulation of Light for Sensing and Photovoltaic ApplicationsJanuary 2012 (has links)
Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation. Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2. At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.
|
2 |
Multiplicity of ExperiencesShagul Hameed, Kamar Shafeeha 24 June 2024 (has links)
In the bustling heart of Chicago's LaSalle Street, the 111 West Monroe site presents a unique narrative of adaptive reuse, encapsulating the thesis of 'Multiplicity of Experiences.' This thesis ventures beyond the conventional restoration, aspiring to reinvigorate and repurpose two distinct architectural forms — a robust brick structure and its transparent steel and glass counterpart — through strategic cuts that foster gathering and community interaction. The manipulation of light at varying intensities becomes the silent choreographer of space, delineating zones of activity and orchestrating the human experience within these revitalized edifices.
The old brick building, a testament to historical solidity, now breathes anew as student housing, offering challenges turned opportunities through its dense facade and muted interiors. In contrast, the steel and glass structure, with its morning light and open vistas, evolves into a sanctuary for families, children, and the elderly, promoting a sense of openness and interconnectivity. This architectural duality harmonizes to form a living, dynamic tableau that captures the multiplicity of human experiences, enabled by horizontal and vertical incisions that carve out communal and private spheres.
The groundwork of the thesis is the concept of gathering — initiating with the public's allure into the retail and amenity spaces on the lower levels, ascending to the private residences above, and culminating in the shared terraces that bridge different age groups and backgrounds. This thesis demonstrates how spatial intervention, particularly through the nuanced application of light and the deliberate choreography of openings, can script diverse experiences from serendipitous encounters to orchestrated communal activities. It presents a model of adaptive reuse that not only conserves the structural essence but also injects a new pulse into the urban fabric, championing a symbiosis between the old and the new, the individual and the collective, the built and the unbuilt.
Through the transformative act of cutting and layering, this study sheds light on the potency of architectural intervention in shaping human and spatial experiences. The result is a rich mosaic of life, where every stratum, every incision, every ray of light adds a verse to the narrative of gathering, from dawn's first light to the tranquil hum of evening, offering a blueprint for reactivating spaces that reach beyond their walls to touch the human soul. / Master of Architecture / This thesis explores adaptive reuse at 111 West Monroe, using architectural cuts to manipulate light and space, thereby creating a multiplicity of experiences that foster community interaction and rejuvenate urban life across diverse generations.
|
3 |
Extreme Mid-IR light control with SiC microstructuresDevarapu, Ganga Chinna Rao January 2014 (has links)
In this thesis, we present our original theoretical investigations of SiC microstruc-tures for extreme light control in the Reststrahlen band of Silicon Carbide (SiC), that occurs in the Mid-IR spectral regime. In this frequency regime, most of the light will be reflected from bulk SiC, due to the extreme permittivity response of SiC. However, we demonstrate that it is possible to control light to be absorbed or ultra refracted within the microstructures constructed from SiC in the Reststrahlen band of SiC. In particular, we show that this high reflective behaviour of SiC can be over-come via different mechanisms: by achieving a Photonic Crystal (PC) band-edge reflectionless condition in a SiC terminated one-dimensional (1D)-PC, by tailoring the effective phonon-polariton gap in SiC-based effective metamaterials, or by cou-pling to cavity modes in SiC structures made of rectangular-cross-section pillars. Furthermore, we demonstrate that by varying the thickness of SiC layers and filling ratio throughout SiC 1D-PC structures or by using SiC pillars of different size in a pyramid arrangement, we can achieve a broad absorption bandwidth with the SiC microstructures. This absorption control provides insight for the design of efficient thermal emitters, which can be used in thermal conversion devices. Moreover, us-ing the concept of Bloch impedance, we find that translucent spectral regions can exist in SiC 1D-PCs. This possibility is highly desirable for constructing optical components in the Mid-IR spectrum where suitable bulk highly refractive materials are rare. In addition, we also present a complete theory of propagation in lossy 1D-PCs, by systematically extending the comprehensive theory for lossless 1D-PCs. Relying on this theory, we report superbending of light, beyond 90 0 in a judiciously designed superprism constructed with a SiC 1D-PC. Since, the findings reported in this thesis are in principle applicable to any polar material, we believe that our work will inspire the design of a variety of absorptive/emissive and ultra-refractive devices across the THz/Mid-IR spectrum.
|
4 |
Management strategies to control sexual maturation in sea-reared Atlantic salmon (Salmo salar L.) : biomass management, light-manipulation and sterilityLeclercq, Eric January 2010 (has links)
Pre-harvest sexual maturation in farmed Atlantic salmon, Salmo salar, remains a key biological bottleneck compromising biomass and financial output, production predictability, environmental respect, stock welfare and the overall sustainability of the on-growing industry. The management practices currently in place are not optimized and events of high maturation rate are still sporadically observed. From an ecological perspective, the escape of reproductively competent, domesticated Atlantic salmon constitutes a threat to the integrity of wild stocks. The forecasted expansion of the Scottish salmon industry compels the need for a comprehensive and more reliable control of sexual maturation. The general aim of this research project was to optimize the current management strategy (windows of light-manipulation and quality grading) and test alternative practices (lighting-technologies, selective harvest and triploidization) in the control of pre-harvest sexual maturation within the Atlantic salmon on-growing industry. In that end, a number of trials were performed using stock reared in sea-cages on a full commercial-scale or in tanks on an experimental scale. The results of this project are organized around three experimental chapters dealing consecutively with body-size dimorphism, grading and harvest quality; light manipulations and triploidy. In each chapter, two original manuscripts either published or in review are included. In addition to these experimental results, a literature review chapter composed of two review papers on the photoperiodic synchronization and developmental regulation of maturation in salmonids and on morphological skin colour changes in teleosts (published) are presented. In the first experimental chapters, we aimed at investigating the possibility of detecting and selectively harvesting a high proportion of sexually recruited fish before flesh quality deterioration. Results clearly showed that body-size dimorphisms between maturity cohorts at the end of the anabolic window of reproduction (June/July) are strong and standard predictors of maturation among related populations with the same freshwater history. Dimorphism can therefore be modelled to easily and accurately estimate maturation rate in a number of discrete rearing-units. If required, a high proportion of sexually recruited fish can be selectively harvested as superior quality product while leaving the immature fish for further on-growing. This provides an alternative to visual grilse grading that is not feasible in large-scale aquaculture systems, prevents downgrading and increases production predictability as compared to emergency harvests. Furthermore, our results showed immature males grow faster than immature females which should be further investigated to fully determine gender specific performances and nutritional requirements. Weight-grading performed earlier in the cycle affects the sex-ratio within individual pens and in turn apparent performance. This work also revealed that Atlantic salmon can exhibit significant variations in skin colouration resembling the onset of nuptial display but that are not related to sexual recruitment and do not correlate with reduced flesh quality. This originates from a lack of purine (silver) pigments which was also identified, to a larger extent, as characteristic of the nuptial display. This suggests a degree of desmoltification in these histologically immature fish. The instrumental colouration of the altered phenotype was shown to be improved towards a more silver-like appearance by direct ice-contact. This knowledge could facilitate post-harvest quality grading towards the most appropriate market channel and increase product acceptance and attractiveness. The second experimental chapter investigated the possibility of improving photoperiodic manipulation used to suppress early maturation, currently applied for 6-months during the second winter at sea using wide-spectrum, high-intensity lighting systems. Our results showed that the window of continuous artificial-light (LL) exposure can be reduced to 4-months following its onset in early January without compromising its efficiency in suppressing pre-harvest maturation. In addition, alternative lighting technologies were also highly potent at suppressing sexual maturation. The mean-irradiance (intensity) generated within a commercial sea-cage was inversely proportional to the suppression of nocturnal plasma melatonin (light perception hormone) and negatively correlates with the maturation rate within the commercial sea-pen. Threshold levels of light-intensity required to achieve optimal (total) suppression of sexual maturation are suggested. Alternative, narrow band-width lighting-technologies (cold cathode and light-emitting diodes) present an array of technical, practical, economic and welfare benefits comparing to the system currently in use. Clear improvements of the photoperiod-manipulation strategy were demonstrated and these would reduce economic and environmental costs but also potential impacts on animal welfare. The third experimental chapter showed the strong potential of sterile-triploid Atlantic salmon stocks both in freshwater and seawater. Triploid out-of-season smolts were produced for the first time using a classical accelerated "square-wave" photoperiod. Triploidization affected the smoltification pattern but had no detrimental effects on freshwater and early seawater performances under both a S0+ and S1 regime. This illustrates the need to adapt the timing of seawater transfer for successfully producing triploid Atlantic salmon post-smolts. Following one year of seawater rearing, the prevalence of external deformities was higher in triploids but remained within acceptable levels. Importantly, the incidence of vertebral deformities and ocular cataract was higher in triploids possibly due to their specific requirements. It is suggested that tailoring the diet to the nutritional requirements of triploids holds strong potential for remediation. This must be addressed if the use of sterile-triploid stock is to become a commercial reality. The present research project provides means to optimize the maturation management strategy within the Atlantic salmon on-growing industry through light-manipulation, maturation detection and selective harvest, and quality grading. Proposed improvements have the potential to increase biomass and financial output, production predictability, environmental respect and animal welfare and will allow standardization of the overall control of pre-harvest sexual maturation. Their implementation provides a comprehensive strategy likely to favour a sustainable expansion of the Atlantic salmon industry. From a longer term perspective, the rearing of sterile-triploid stocks is promising and should be actively investigated to isolate domesticated strains from their wild conspecifics. This would also eliminate the need for on-growers to deploy a maturation management strategy that that might still affect stock welfare and remains, despite the strong improvements demonstrated, not 100% reliable, costly, technical and protracted.
|
5 |
Avledning av öringsmolt (<em>Salmo trutta</em>) från turbinintag / Diversion of trout smolts (<em>Salmo trutta)</em> from turbine intakesEngqvist, Thérèse January 2009 (has links)
<p>Vattenkraftstationer, med dammar och turbiner, utgör hinder för nedströmsvandrande smolt. Syftet med denna studie var att undersöka turbindödligheten för öringsmolt (<em>Salmo trutta)</em> vid två kraftstationer, de befintliga ytlänsarnas avledningseffekt och om effekten kunde förstärkas genom mörkläggning i form av övertäckning av kraftkanalen med en presenning vid turbinintaget. Utöver detta var avsikten även att undersöka om det fanns något samband mellan smoltgrad och smoltens förmåga att förflytta sig mot havet. I Emån i Småland fångades 46 öringsmolt som radiomärktes och sattes ut vid två kraftstationer och pejlades dagligen i sex veckor. Det var en större dödlighet vid den övre stationen än vid den nedre. Ytlänsen vid den nedre stationen hade en klart avledande effekt, men inte ytlänsen vid den övre stationen. Samtliga smolt som valde passage via isutskovet, gjorde det när kraftkanalen vid turbinintaget var övertäckt med presenning (d.v.s. ljusintensiteten minskades kraftigt). Det gick inte att påvisa någon skillnad mellan låg och hög smoltgrad eller tidig och sen utsättning för fördröjning vid den ena kraftstationen, inte heller för förflyttning efter de två kraftstationerna.</p> / <p>Hydropower plants, with dams and turbines, form obstacles to smolts migrating downstream. The purpose of this study was to investigate turbine-induced mortality of brown trout (<em>Salmo trutta</em>) smolts at two power plants, guidance efficiency of existing diverters and whether the effect was enhanced by reducing light levels at the turbine intake by covering the power plant channel with an opaque tarpaulin. Furthermore, the aim was to investigate whether there was a relationship between smolt status and the smolts’ ability to move towards the sea. In the River Emån in Småland 46 trout smolts were caught, radio-tagged, released at two power plants and tracked daily for six weeks. There was a higher mortality at the upper power plant than at the lower one. The diverter at the lower power plant had a statistically significant guiding effect, but the diverter at the upper power plant did not. All of the smolts that chose passage through the trash gate did so when the power channel was covered with tarpaulin (i.e. light levels were greatly reduced). There was no evidence that smolt status or release date would affect passage times at the upper station, nor did smolt status affect swimming speeds downstream of the two power stations.</p> / Cost-Benefit Analysis of River Regulation
|
6 |
Avledning av öringsmolt (Salmo trutta) från turbinintag / Diversion of trout smolts (Salmo trutta) from turbine intakesEngqvist, Thérèse January 2009 (has links)
Vattenkraftstationer, med dammar och turbiner, utgör hinder för nedströmsvandrande smolt. Syftet med denna studie var att undersöka turbindödligheten för öringsmolt (Salmo trutta) vid två kraftstationer, de befintliga ytlänsarnas avledningseffekt och om effekten kunde förstärkas genom mörkläggning i form av övertäckning av kraftkanalen med en presenning vid turbinintaget. Utöver detta var avsikten även att undersöka om det fanns något samband mellan smoltgrad och smoltens förmåga att förflytta sig mot havet. I Emån i Småland fångades 46 öringsmolt som radiomärktes och sattes ut vid två kraftstationer och pejlades dagligen i sex veckor. Det var en större dödlighet vid den övre stationen än vid den nedre. Ytlänsen vid den nedre stationen hade en klart avledande effekt, men inte ytlänsen vid den övre stationen. Samtliga smolt som valde passage via isutskovet, gjorde det när kraftkanalen vid turbinintaget var övertäckt med presenning (d.v.s. ljusintensiteten minskades kraftigt). Det gick inte att påvisa någon skillnad mellan låg och hög smoltgrad eller tidig och sen utsättning för fördröjning vid den ena kraftstationen, inte heller för förflyttning efter de två kraftstationerna. / Hydropower plants, with dams and turbines, form obstacles to smolts migrating downstream. The purpose of this study was to investigate turbine-induced mortality of brown trout (Salmo trutta) smolts at two power plants, guidance efficiency of existing diverters and whether the effect was enhanced by reducing light levels at the turbine intake by covering the power plant channel with an opaque tarpaulin. Furthermore, the aim was to investigate whether there was a relationship between smolt status and the smolts’ ability to move towards the sea. In the River Emån in Småland 46 trout smolts were caught, radio-tagged, released at two power plants and tracked daily for six weeks. There was a higher mortality at the upper power plant than at the lower one. The diverter at the lower power plant had a statistically significant guiding effect, but the diverter at the upper power plant did not. All of the smolts that chose passage through the trash gate did so when the power channel was covered with tarpaulin (i.e. light levels were greatly reduced). There was no evidence that smolt status or release date would affect passage times at the upper station, nor did smolt status affect swimming speeds downstream of the two power stations. / Cost-Benefit Analysis of River Regulation
|
Page generated in 0.1134 seconds