• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 71
  • 19
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 251
  • 106
  • 48
  • 43
  • 40
  • 40
  • 39
  • 32
  • 32
  • 32
  • 27
  • 25
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Biomass Pretreatment For Increased Anhydrosugars Yield During Fast Pyrolysis

Li, Qi 11 December 2009 (has links)
Production of liquid fuels is a high national priority to provide transporation fuels. Production of liquid biouels from biomass has been idenfied as a viable goal over the next decades. Fast pyrolysis is the rapid thermal degradation of lignocellulosic biomass in the absence of oxygen. Levoglucosan, which can be hydrolyzed and fermented into bio-ethanol, is produced during the pyrolysis process of the cellulose contained in biomass. Pure cellulose results in the production of levoglucosan of more than 50% by feedstock weight while woody biomass typically produces about 3% during pyrolysis. Researchers have performed significant research into methods to increase yields of levoglucosan and other associated anhydrosugars during pyrolysis. Most research has focused on mild acid pretreatment of biomass feedstocks prior to pyrolysis. Such treatment demineralizes and removes hemicellulose that appears to hinder the production of levoglucosan during pyrolysis. The objective of this study is to move beyond simple acid pretreatment to increase pyrolytic anhydrosugars yields during fast pyrolysis.
12

Evaluation of suitability of water hyacinth as feedstock for bio-energy production / Cornelis JohannesJ. Schabort

Schabort, Cornelis Johannes January 2014 (has links)
The suitability of water hyacinth (Eichornia crassipes) as a viable feedstock for renewable energy production was investigated in this project. Water hyacinth used in this study was harvested from the Vaal River near Parys in the northwest region of the Free State province, South Africa (26°54′S 27°27′E). The wet plants were processed in the laboratory at the North-West University by separating the roots from the leaves and the stems, thus obtaining two separate water hyacinth feedstock. Characterisation of the feedstock showed that the stems and leaves are more suitable for bio-energy production than roots, due to the higher cellulose and hemicellulose content and very low lignin content of the stems and leaves. Water hyacinth was evaluated as feedstock for the production of bio-ethanol gel, bio-ethanol, bio-oil and bio-char. The recovery of water from the wet plants for use in bio-refining or for use as drip-irrigation in agriculture was also investigated. Cellulose was extracted from water hyacinth feedstock to be used as a gelling agent for the production of ethanol-gel fuel. A yield of 200 g cellulose/kg dry feedstock was obtained. The extracted cellulose was used to produce ethanol-gel with varying water content. The gel with properties closest to the SANS 448 standard contained 90 vol% ethanol and 10 vol% water, with 38 wt% cellulose. This gel was found to ignite readily and burn steadily, without flaring, sudden deflagrations, sparking, splitting, popping, dripping or exploding from ignition until it had burned to extinction, as required by SANS 448. The only specifications that could not be met were the viscosity (23,548 cP) and the high waste residue (32 wt%) left after burning. The other major concern is the extremely high costs involved with the manufacturing of ethanol-gel from water hyacinth cellulose. It can be concluded that ethanol-gel cannot be economically produced using water hyacinth as feedstock. Chemical and enzymatic extraction of water from the feedstock, which is stems and leaves or roots, showed that the highest yield of water was obtained using a combination of Celluclast 1.5 L, Pectinex Ultra SP-L and additional de-ionised water. A yield of 0.89 ± 0.01 gwater/gwater in biomass was realised. This is, however, only 0.86 wt% higher than the highest yield obtained (0.87 ± 0.01 gwater/gwater in biomass) using only Pectinex Ultra SP-L and de-ionised water. It is recommended to use only Pectinex Ultra SP-L and de-ionised water at a pH of 3.5 and a temperature of 40°C. Using one enzyme instead of two reduces operating costs and simplifies the chemical extraction process. The extracted water, both filtered and unfiltered, was not found to be suitable for domestic use without further purification to reduce the total dissolved solids (TDS), potassium and manganese levels. Both the unfiltered and filtered water were, however, found to be suitable for industrial and agricultural purposes, except for the high TDS levels. If the TDS and suspended particle level can be reduced, the extracted water would be suitable for domestic, industrial and agricultural use. The potential fermentation of the sugars derived from the water hyacinth, using ultrasonic pretreatment, was investigated. Indirect ultrasonic treatment (ultrasonic bath) proved to be a better pretreatment method than direct sonication (ultrasonic probe). The optimum sugar yield for the ultrasonic bath pretreatment with 5% NaOH was found to be 0.15 g sugar/g biomass (0.47 g sugar/g available sugar) using an indirect sonication energy input of 27 kJ/g biomass. The optimum sugar yield is lower than those reported in other studies using different pretreatment methods. Theoretically a maximum of 0.24 g ethanol can be obtained per g available sugar. This relates to an ethanol yield of 0.08 g ethanol/kg wet biomass. The low yield implies that ethanol production from water hyacinth is not economically feasible. The production of bio-oil and bio-char from water hyacinth through thermochemical liquefaction of wet hyacinth feedstock was investigated. An optimum bio-char yield of 0.55 g bio-char/g biomass was achieved using an inert atmosphere (nitrogen) at 260°C and the stems and leaves as feedstock. With the roots as feedstock a slightly lower optimum yield of 0.45 g bio-char/g biomass was found using a non-reducing atmosphere (carbon monoxide) at 280°C. The bio-oil yield was too low to accurately quantify. As water is required during thermochemical liquefaction, it was found unnecessary to dry the biomass to the same extent as was the case with the pretreatment and fermentation of the water hyacinth, making this a more feasible route for biofuel production. Bio-char produced through liquefaction of roots as the feedstock and leaves and stems as the other feedstock had a higher heating value (HHV) of 10.89 ± 0.45 MJ/kg and 23.31 ± 0.45 MJ/kg respectively. Liquefaction of water hyacinth biomass increased the HHV of the feedstock to a value comparable to that of low grade coal. This implies a possible use of water hyacinth for co-gasification. The most effective route for bio-energy production in the case of water hyacinth was found to be thermochemical liquefaction (12.8 MJ/kg wet biomass). Due to the high production costs involved, it is recommended to only use water hyacinth as a feedstock for biofuel production if no alternative feedstock are available. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
13

Evaluation of suitability of water hyacinth as feedstock for bio-energy production / Cornelis JohannesJ. Schabort

Schabort, Cornelis Johannes January 2014 (has links)
The suitability of water hyacinth (Eichornia crassipes) as a viable feedstock for renewable energy production was investigated in this project. Water hyacinth used in this study was harvested from the Vaal River near Parys in the northwest region of the Free State province, South Africa (26°54′S 27°27′E). The wet plants were processed in the laboratory at the North-West University by separating the roots from the leaves and the stems, thus obtaining two separate water hyacinth feedstock. Characterisation of the feedstock showed that the stems and leaves are more suitable for bio-energy production than roots, due to the higher cellulose and hemicellulose content and very low lignin content of the stems and leaves. Water hyacinth was evaluated as feedstock for the production of bio-ethanol gel, bio-ethanol, bio-oil and bio-char. The recovery of water from the wet plants for use in bio-refining or for use as drip-irrigation in agriculture was also investigated. Cellulose was extracted from water hyacinth feedstock to be used as a gelling agent for the production of ethanol-gel fuel. A yield of 200 g cellulose/kg dry feedstock was obtained. The extracted cellulose was used to produce ethanol-gel with varying water content. The gel with properties closest to the SANS 448 standard contained 90 vol% ethanol and 10 vol% water, with 38 wt% cellulose. This gel was found to ignite readily and burn steadily, without flaring, sudden deflagrations, sparking, splitting, popping, dripping or exploding from ignition until it had burned to extinction, as required by SANS 448. The only specifications that could not be met were the viscosity (23,548 cP) and the high waste residue (32 wt%) left after burning. The other major concern is the extremely high costs involved with the manufacturing of ethanol-gel from water hyacinth cellulose. It can be concluded that ethanol-gel cannot be economically produced using water hyacinth as feedstock. Chemical and enzymatic extraction of water from the feedstock, which is stems and leaves or roots, showed that the highest yield of water was obtained using a combination of Celluclast 1.5 L, Pectinex Ultra SP-L and additional de-ionised water. A yield of 0.89 ± 0.01 gwater/gwater in biomass was realised. This is, however, only 0.86 wt% higher than the highest yield obtained (0.87 ± 0.01 gwater/gwater in biomass) using only Pectinex Ultra SP-L and de-ionised water. It is recommended to use only Pectinex Ultra SP-L and de-ionised water at a pH of 3.5 and a temperature of 40°C. Using one enzyme instead of two reduces operating costs and simplifies the chemical extraction process. The extracted water, both filtered and unfiltered, was not found to be suitable for domestic use without further purification to reduce the total dissolved solids (TDS), potassium and manganese levels. Both the unfiltered and filtered water were, however, found to be suitable for industrial and agricultural purposes, except for the high TDS levels. If the TDS and suspended particle level can be reduced, the extracted water would be suitable for domestic, industrial and agricultural use. The potential fermentation of the sugars derived from the water hyacinth, using ultrasonic pretreatment, was investigated. Indirect ultrasonic treatment (ultrasonic bath) proved to be a better pretreatment method than direct sonication (ultrasonic probe). The optimum sugar yield for the ultrasonic bath pretreatment with 5% NaOH was found to be 0.15 g sugar/g biomass (0.47 g sugar/g available sugar) using an indirect sonication energy input of 27 kJ/g biomass. The optimum sugar yield is lower than those reported in other studies using different pretreatment methods. Theoretically a maximum of 0.24 g ethanol can be obtained per g available sugar. This relates to an ethanol yield of 0.08 g ethanol/kg wet biomass. The low yield implies that ethanol production from water hyacinth is not economically feasible. The production of bio-oil and bio-char from water hyacinth through thermochemical liquefaction of wet hyacinth feedstock was investigated. An optimum bio-char yield of 0.55 g bio-char/g biomass was achieved using an inert atmosphere (nitrogen) at 260°C and the stems and leaves as feedstock. With the roots as feedstock a slightly lower optimum yield of 0.45 g bio-char/g biomass was found using a non-reducing atmosphere (carbon monoxide) at 280°C. The bio-oil yield was too low to accurately quantify. As water is required during thermochemical liquefaction, it was found unnecessary to dry the biomass to the same extent as was the case with the pretreatment and fermentation of the water hyacinth, making this a more feasible route for biofuel production. Bio-char produced through liquefaction of roots as the feedstock and leaves and stems as the other feedstock had a higher heating value (HHV) of 10.89 ± 0.45 MJ/kg and 23.31 ± 0.45 MJ/kg respectively. Liquefaction of water hyacinth biomass increased the HHV of the feedstock to a value comparable to that of low grade coal. This implies a possible use of water hyacinth for co-gasification. The most effective route for bio-energy production in the case of water hyacinth was found to be thermochemical liquefaction (12.8 MJ/kg wet biomass). Due to the high production costs involved, it is recommended to only use water hyacinth as a feedstock for biofuel production if no alternative feedstock are available. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
14

Coverage impacts biomass composition, conversion to ethanol yields and microbial communities during storage

Rigdon, Anne R. January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Dirk E. Maier / Increased mandates for the production of transportation fuels from renewable resources have thrust the conversion of lignocellulosic biomass, e.g., energy crops and agricultural residues, to ethanol into commercial production. The conversion of biomass to ethanol has been implemented; transportation and storage logistics are still obstacles to overcome by industry. Limited harvest windows throughout the year necessitate extended periods of biomass storage to maintain a consistent, year-round supply to the biorefinery. Sorghum biomass stored with no coverage (NN), covered with tarp (NT), wrapped in plastic (PN) and covered with a tarp and wrapped in plastic (PT) for six months was analyzed for changes in biomass components—cellulose, hemicellulose and lignin, cellulose and hemicellulose degrading enzymes, and conversion to ethanol yields. Treatment NN had increased enzyme activity, and reduced cellulose content and ethanol yields; while biomass covered maintained enzyme activity, cellulose content and ethanol yields. Sequencing of the Large SubUnit (LSU) region and the internal transcribed spacer (ITS) regions of ribosomal RNA gene gave consistent results of fungal community dynamics in biomass stored as previously described. Fungal community richness and diversity increased, while evenness decreased in uncovered biomass during storage. Covered and uncovered storage treatments and over time were found to exhibit distinctly different fungal communities. In contrast, bacterial communities were found to be unresponsive to storage treatments and durations. Cladosporium, Alternaria and Cryptococcus were found to be the most abundant in the stored biomass. Covering of biomass strongly limits the arrival and establishment of new fungal propagules in stored biomass, reducing biomass degradation by these often pathogenic, saprobic or endophytic communities. Overall, covering of biomass during storage is essential for optimal substrate retention for downstream processing into ethanol. In addition, storage and transportation logistics of three real-world scenarios were evaluated for the conversion of wheat straw, corn stover and sorghum stalks residues to ethanol at a biorefinery located in Southwest Kansas. Economic evaluation revealed that transport and storage of residues at satellite storage facilities was most economical for farmers and would create opportunity for the operation of profitable facilities that would supply the local biorefinery on demand throughout the year.
15

Estudos de proteômica, estruturais e funcionais de proteínas envolvidas na degradação da biomassa lignocelulósica: expansinas microbianas e hidrolases de glicosídeos termofílicas / Proteomic, structural and functional studies of lignocellulosic biomass degradation: microbial expansins and thermophilic glycosyl hydrolases

Tomazini Junior, Atílio 11 March 2016 (has links)
O Brasil possui uma posição privilegiada quando se refere à produção de etanol. Por questões históricas e geográficas o país é responsável por mais de 30 % da produção mundial de etanol, com uma produção nacional de mais de 28 bilhões de litros em 2014. Para maximizar o rendimento desse processo, está em desenvolvimento a tecnologia associada ao etanol de segunda geração ou etanol lignocelulósico. Os principais desafios desta tecnologia são: melhorar a eficiência de conversão do substrato em produto e a produção em grande escala utilizando substratos de baixo custo. Com o objetivo de melhorar a eficiência do processo de conversão foram estudadas proteínas auxiliares (expansinas) que, em conjunto com celulases, melhoram a despolimerização de biomassa lignocelulósica em açúcares fermentescíveis. Além disso, realizou-se também a caracterização de enzimas ativas de carboidratos (CAZymes) de origem termofílica do organismo Thermogemmatispora sp. T81, devido a capacidade que estas proteínas apresentam de manter a atividade e conformação estrutural em altas temperaturas por um prolongado período de tempo. A partir de análises utilizando bioinformática, os genes que codificam para expansinas de Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei foram clonados e expressos em E. coli, e seus produtos gênicos (as expansinas) tiveram seus índices de sinergismo (devido atuação conjunta com coquetéis comerciais) e atividade catalítica determinados. Adicionalmente, dispondo de alinhamentos estruturais, foi proposto um mecanismo hidrolítico para elas. Em relação à bactéria Thermogemmatispora sp. T81, foram realizadas análises genômicas e proteômicas, a fim de selecionar enzimas superexpressas em meio celulósico. Seus genes foram clonados heterologamente em E. coli e o produto de expressão caracterizado bioquimicamente (cromatografia, ensaios de atividade e perfil de hidrólise) e estruturalmente (SAXS e dicroísmo circular). Os índices de sinergismo determinados foram de 2,47; 1,96 e 2,44 para as expansinas de Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei, respectivamente. A partir dos alinhamentos estruturais foi proposto a díade Asp/Glu como sitio catalítico em expansinas. As análises de proteômica possibilitaram a seleção de quatro alvos de clonagem, por apresentarem alto índice de expressão quando a bactéria foi cultivada em meio celulósico. Estas proteínas foram caracterizadas quanto a atividade e apresentaram um perfil comum: temperatura ótima de ação (de 70 a 75 °C), pH ótimo de 5, e hidrolisam preferencialmente substratos hemicelulósicos (xilano). A porcentagem de estruturais secundárias das proteínas em estudo foram confirmadas com predições teóricas ao se utilizar a técnica de dicroísmo circular. Desta maneira, os objetivos iniciais propostos neste projeto foram concluídos com a determinação do grau de sinergismo das proteínas expansinas em estudo e a proposição de um mecanismo de hidrólise para as mesmas, considerando que tais proteínas por mais de 20 anos tiveram sua atividade definida exclusivamente como acessória. Além disso, este estudo contribui com a identificação e seleção de genes para CAZymes termofilícas com aplicação biotecnológica devido às propriedades termoestáveis apresentadas. / Brazil holds a privileged position regarding the production of ethanol. Due to geographical and historical reasons the country produces more than 30% of the world’s ethanol, with a national yield of more than 28 billion liters in 2014 alone. To further increase gain in production, technology related to second generation (or lignocellulosic) ethanol is currently under development. The main challenges of this technology are: to improve the substrate-product conversion and large-scale production using low-cost substrates. In order to improve the efficiency of the former, auxiliary proteins (expansins), which enhance lignocellulosic biomass depolymerization to fermentable sugars when associated to celullases, were studied. Besides, due to structural and catalytic resilience when subjected to high temperature, the characterization of carbohydrate-active enzymes (CAZymes) of thermophilic origin from Thermogemmatispora sp. T81 organism was performed. Through the application of bioinformatics, genes coding for Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei expansins were cloned and expressed in E. coli, being the products assessed regarding their synergism (due to joint action with commercially available enzyme cocktails) and catalytic activity. Additionally, a hydrolytic mechanism was proposed based on structural alignments. Concerning the Thermogemmatispora sp. T81 bacteria, genomic and proteomic analysis were performed in order to select overexpressed enzymes in cellulosic medium. The heterologous cloning of the respective genes was then performed in E. coli, being the products characterized biochemically (utilizing chromatography, activity assay and hydrolysis profile) and structurally (through SAXS and circular dichroism). Determined synergistic indices were 2.47; 1.96 and 2.44 for Xanthomonas campestris, Bacillus licheniformis e Trichoderma reesei expansins, respectively. From structural alignments, the dyad Asp/Glu was proposed as the catalytic site in expansins. Proteomic analysis allowed the selection of four proteins for cloning, due to high expression levels when the bacteria were cultivated in a cellulosic medium. These proteins were characterized based on their activity and showed similar trends: optimal functional temperature (70-75 °C), optimal pH of 5, and preferential hydrolysis of hemicellulosic substrates (xylan). Theoretical predictions of secondary structure percentages of studied proteins were confirmed through circular dichroism technique. Therefore, the initially proposed objectives in this project were accomplished with the determination of synergistic level and proposed hydrolytic mechanism for the expansins, considering that the role of these proteins were deemed marginal for over 20 years. In addition, this study contributes with the identification and selection of genes of thermophilic CAZymes with biotechnological applications due to shown thermostability properties.
16

Life Cycle Modelling of Multi-product Lignocellulosic Ethanol Systems

Shen, Timothy 16 August 2012 (has links)
Life cycle assessment is an important tool to evaluate the impact of 2nd generation lignocellulosic ethanol, and its potential greenhouse gas (GHG) emissions benefits relative to gasoline. The choice of feedstock, process technology, and co-products may affect GHG emissions and energy metrics. Co-products may improve both the financial and environmental performance of the biorefinery. 26 well-to-wheel models of future lignocellulose-to-ethanol pathways were constructed, considering corn stover, switchgrass, and poplar feedstocks, three pre-treatment technologies, four co-product options, and the use of ethanol in a light-duty vehicle. Model results showed that all pathways with lignin pellet co-production had significantly lower net GHG emissions relative to gasoline and corresponding pathways producing only electricity. Pathways co-producing xylitol had at least 66% greater GHG emission reductions relative to pathways co-producing only lignin pellets. All feedstock/pretreatment/co-product combinations led to GHG reductions of at least 60%, meeting the threshold stipulated under the Energy Independence and Security Act.
17

Life Cycle Modelling of Multi-product Lignocellulosic Ethanol Systems

Shen, Timothy 16 August 2012 (has links)
Life cycle assessment is an important tool to evaluate the impact of 2nd generation lignocellulosic ethanol, and its potential greenhouse gas (GHG) emissions benefits relative to gasoline. The choice of feedstock, process technology, and co-products may affect GHG emissions and energy metrics. Co-products may improve both the financial and environmental performance of the biorefinery. 26 well-to-wheel models of future lignocellulose-to-ethanol pathways were constructed, considering corn stover, switchgrass, and poplar feedstocks, three pre-treatment technologies, four co-product options, and the use of ethanol in a light-duty vehicle. Model results showed that all pathways with lignin pellet co-production had significantly lower net GHG emissions relative to gasoline and corresponding pathways producing only electricity. Pathways co-producing xylitol had at least 66% greater GHG emission reductions relative to pathways co-producing only lignin pellets. All feedstock/pretreatment/co-product combinations led to GHG reductions of at least 60%, meeting the threshold stipulated under the Energy Independence and Security Act.
18

Decolourization of azo dyes in textile wastewater by microbial processes

Türgay, Orcun January 2010 (has links)
<p>Decolorization of Azo dyes in synthetic wastewater composition which is similar to real textile wastewater was carried out by microbial process. Experiments were performed in two continuous systems. Experiments were performed under anaerobic conditions in order to break the nitrogen bond of the azo group (-N=N-). A synthetic dye solution which contained 200 mg/L Reactive Black 5, 200 mg/L Procion Red MX-5B and 1 g/L yeast extract was prepared. In this study, living microorganisms were used to degrade the dyes in wastewater. Rice husks which contain bacteria and fungi were used in the reactors of continuous systems. The parameters tested on continuous system were wastewater composition, the number of reactors, the amount of yeast extract in wastewater composition, the wastewater flowrate, washing the system with wood chips solution, addition of yeast extract solution.  Results have shown that increasing the number of reactors, the retention time, the amount of yeast extract and washing the system with wood chips solution had positive effects for degradation of the dyes from wastewater. When the flowrate was increased the retention time has decreased so degradation of dyes has decreased but although the flowrate increased twice, % degradation hasn’t decreased as the same ratio. Therefore this result showed that this process can be worked for faster flowrates. Microbial process is a promising technology which might be used to treat wastewater containing azo dyes with good performance.</p><p> </p>
19

Lignocellulosic biomass-to-biofuel supply chain optimization with mobile densification and farmers’ choices

Albashabsheh, Nibal Tawfiq January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Jessica L. Heier Stamm / This dissertation focuses on logistics challenges arising in the biofuels industry. Studies have found that logistics costs in the biomass-to-biofuel supply chain (BBSC) account for 35%-65% of total biofuel production cost. This is mainly due to the low density of biomass that results in high costs associated with biomass transportation, storage, and handling in the biomass-to-biofuel supply chain. Densification provides an as-yet-unexplored opportunity to reduce logistic costs associated with biomass-to-biofuel supply chains. This research advances understanding about biomass-to-biofuel supply chain management through new optimization models. As a first step, the author presents an extensive overview of densification techniques and BBSC optimization models that account for biomass densification. This literature review helps the author to recognize the gaps and future research areas in BBSC studies. These gaps direct the author toward the remaining components of the dissertation. In particular, the literature review highlights two research gaps. First, the review indicates that mobile pelleting holds promise for improved BBSC management, but that there is no mathematical optimization model that addresses this opportunity. Second, currently, there does not exist a model that explicitly accounts for farmers’ objectives and their probability to sell biomass to the bioenergy plant in BBSC optimization. To fill the first gap, the author focuses on managing the BBSC considering mobile densification units to account for chances to minimize logistics costs. A mixed integer linear programming model is proposed to manage the BBSC with different types and forms of biomass feedstock and mobile densification units. Sensitivity analysis and scenario analysis are presented to quantify conditions that make mobile densification an attractive choice. The author conducts a case study to demonstrate model applicability and type of analysis that can be drawn from this type of models. The result indicates that mobile pelleting is not an attractive choice under the current economic status. However, modest changes in pelleting cost, satellite storage location fixed cost, and/or travel distances are enough to make mobile pelleting an attractive choice. To fill the second gap, the author introduces a model that explicitly accounts for mobile densification and farmers’ probability to supply a bioenergy plant with biomass feedstock. Farmers’ probability to provide biomass to the bioenergy plant depends on contract attributes, including expected net return and services provided by the bioenergy plant. The proposed model helps the bioenergy plant to meet biofuel demand while considering farmers’ choices that satisfy their own objectives and preferences. The model makes it possible to determine most important factors that influence type of contract offered to each supplier and optimal BBSC design. A case study based on the state of Kansas is conducted to demonstrate how bioenergy plant can benefit from this type of model.
20

PRETREATMENT OF SWEET SORGHUM BAGASSE TO IMPROVE ENZYMATIC HYDROLYSIS FOR BIOFUEL PRODUCTION

Loku Umagiliyage, Arosha 01 August 2013 (has links)
With recent emphasis on development of alternatives to fossil fuels, sincere attempts are being made on finding suitable lignocellulosic feedstocks for biochemical conversion to fuels and chemicals. Sweet Sorghum is among the most widely adaptable cereal grasses, with high drought resistance, and ability to grow on low quality soils with low inputs. It is a C4 crop with high photosynthetic efficiency and biomass yield. Since sweet sorghum has many desirable traits, it has been considered as an attractive feedstock. Large scale sweet sorghum juice extraction results in excessive amounts of waste sweet sorghum bagasse (SSB), which is a promising low cost lignocellusic feed stock. The ability of two pretreatment methods namely conventional oven and microwave oven pretreatment for disrupting lignocellulosic structures of sweet sorghum bagasse with lime [Ca(OH)2] and sodium hydroxide [NaOH] was evaluated. The primary goal of this study was to determine optimal alkali pretreatment conditions to obtain higher biomass conversion (TRS yield) while achieving higher lignin reduction for biofuel production. The prime objective was achieved using central composite design (CCD) and optimization of biomass conversion and lignin removal simultaneously for each alkali separately by response surface method (RSM). Quadratic models were used to define the conditions that separately and simultaneously maximize the response variables. The SSB used in this study was composed of cellulose, hemicellulose, and lignin in the percentage of 36.9 + 1.6, 17.8 + 0.6, and 19.5 + 1.1, respectively. The optimal conditions for lime pretreatment in the conventional oven at 100 °C was 1.7 (% w/v) lime concentration (=0.0024 molL-1), 6.0% (w/v) SSB loading, 2.4 hr pretreatment time with predicted yields of 85.6% total biomass conversion and 35.5% lignin reduction. For NaOH pretreatment, 2% (w/v) alkali (=0.005 molL-1), 6.8% SSB loading and 2.3 hr duration was the optimal level with predicted biomass conversion and lignin reduction of 92.9% and 50.0%, respectively. More intensive pretreatment conditions removed higher amount of hemicelluloses and cellulose. Microwave based pretreatments were carried out in a CEM laboratory microwave oven (MARS 6-Xpress Microwave Reactions System, CEM Corporation, Matthews, NC) and with varying alkali concentration(0.3 - 3.7 % w/v) at varying temperatures (106.4 - 173.6 °C), and length of time (6.6 - 23.4 min). The NaOH pretreatment was optimized at 1.8 (% w/v) NaOH, 143 °C, 14 min time with predicted yields of 85.8% total biomass conversion and 78.7% lignin reduction. For lime pretreatment, 3.1% (w/v) lime, 138 °C and 17.5 min duration was the optimal level with predicted biomass conversion and lignin reduction of 79.9% and 61.1%, respectively. Results from this study were further supported by FTIR spectral interpretation and SEM images.

Page generated in 0.0188 seconds