Spelling suggestions: "subject:"line cographs"" "subject:"line bigraphs""
1 |
Výpočetní složitost problémů kombinatorické optimalizace pro specifické třídy grafů / Computational complexity of combinatorial problems in specific graph classesMasařík, Tomáš January 2014 (has links)
The topic of this diploma thesis is the edge distance labeling problem with specified parametres p, q and λ. We found a dychotomy for p = 2 and q = 1. So the problem is polynomial if λ ≤ 4 and it is NP-complete for λ > 4. The boundary is shifted by one prior to the vertex distance labeling problem, which has already been solved. Polynomial cases are characterized as some special paths and cycles with a few additional vertices. To show NP-completeness we use a well-known NP-complete problem of Monotone not all equal 3-SAT. That section has four parts: One for odd λ, one for even λ and two more reductions for λ = 5 and λ = 6. 1
|
2 |
Entropy and GraphsChangiz Rezaei, Seyed Saeed January 2014 (has links)
The entropy of a graph is a functional depending both on the graph itself and on a probability distribution on its vertex set. This graph functional originated from the problem of source coding in information theory and was introduced by J. K\"{o}rner in 1973. Although the notion of graph entropy has its roots in information theory, it was proved to be closely related to some classical and frequently studied graph theoretic concepts. For example, it provides an equivalent definition for a graph to be perfect and it can also be applied to obtain lower bounds in graph covering problems.
In this thesis, we review and investigate three equivalent definitions of graph entropy and its basic properties. Minimum entropy colouring of a graph was proposed by N. Alon in 1996. We study minimum entropy colouring and its relation to graph entropy. We also discuss the relationship between the entropy and the fractional chromatic number of a graph which was already established in the literature.
A graph $G$ is called \emph{symmetric with respect to a functional $F_G(P)$} defined on the set of all the probability distributions on its vertex set if the distribution $P^*$ maximizing $F_G(P)$ is uniform on $V(G)$. Using the combinatorial definition of the entropy of a graph in terms of its vertex packing polytope and the relationship between the graph entropy and fractional chromatic number, we prove that vertex transitive graphs are symmetric with respect to graph entropy. Furthermore, we show that a bipartite graph is symmetric with respect to graph entropy if and only if it has a perfect matching. As a generalization of this result, we characterize some classes of symmetric perfect graphs with respect to graph entropy. Finally, we prove that the line graph of every bridgeless cubic graph is symmetric with respect to graph entropy.
|
3 |
On processing line graphs: understanding aging and the role of spatial and verbal resourcesFausset, Cara Bailey 09 July 2008 (has links)
The objective of this research is to explore high-speed analog-to-digital converters (ADCs) using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) for wireless digital receiver applications. The stringent requirements of ADCs for the high-performance next-generation wireless digital receiver include (1) low power, (2) low cost, (3) wide input signal bandwidth, (4) high sampling rate, and (5) medium to high resolution. The proposed research achieves the objective by implementing high-performance ADC's key building blocks and integrating these building blocks into a complete sigma-delta analog-to-digital modulator that satisfies the demanding specifications of next-generation wireless digital receiver applications. The scope of this research is divided into two main parts: (1) high-performance key building blocks of the ADC, and (2) high-speed sigma-delta analog-to-digital modulator. The research on ADC's building blocks includes the design of two high-speed track-and-hold amplifiers (THA) and two wide-bandwidth comparators operating at the sampling rate > 10 GS/sec with satisfying resolution. The research on high-speed sigma-delta analog-to-digital modulator includes the design and experimental characterization of a high-speed second-order low-pass sigma-delta modulator, which can operate with a sampling rate up to 20 GS/sec and with a medium resolution. The research is envisioned to demonstrate that the SiGe HBT technology is an ideal platform for the design of high-speed ADCs.
|
4 |
Estudo de casos de complexidade de coloraÃÃes gulosa de vÃrtices e de arestas / Case studies of complexity of greedy colorings of vertices and edgesAna Karolinna Maia de Oliveira 07 April 2011 (has links)
Os problemas de colorac Ëao de vÂertices e de arestas, que consistem em determinar o menor
nÂumero de cores necessÂarias para colorir os vÂertices e arestas de um grafo, respectivamente, de
forma que vÂertices adjacentes e arestas adjacentes, respectivamente, possuem cores distintas,
sËao problemas computacionalmente difÂıceis e sËao objeto de pesquisa recorrente em teoria do
grafos em virtude de inÂumeros problemas prÂaticos que eles modelam.
No presente trabalho, estudamos o pior desempenho dos algoritmos gulosos de colorac Ëao
de vÂertices e de arestas. O algoritmo guloso tem o seguinte princÂıpio geral: receber, um a um,
os vÂertices (respect. as arestas) do grafo a ser colorido, atribuindo sempre a menor cor possÂıvel
ao vÂertice (resp. aresta) a ser colorido. Observamos que colorir de forma gulosa as arestas de
um grafo equivale a colorir de forma gulosa o seu grafo linha, tendo sido este o maior interesse
na pesquisa em colorac Ëao gulosa de arestas.
O pior desempenho dos algoritmos Âe medido pelo maior nÂumero de cores que eles podem
utilizar. No caso da colorac Ëao gulosa de vÂertices, esse Âe o nÂumero de Grundy ou nÂumero
cromÂatico guloso do grafo. No caso da colorac Ëao de arestas, esse Âe o Âındice cromÂatico guloso
ou Âındice de Grundy do grafo. Sabe-se que determinar o nÂumero de Grundy de um grafo qualquer
Âe NP-difÂıcil. A complexidade de determinar o Âındice de Grundy de um grafo qualquer era
entretanto um problema em aberto.
Na presente dissertac Ëao, provamos dois resultados de complexidade. Provamos que o
nÂumero de Grundy de um grafo (q,q−4) pode ser determinado em tempo polinomial. Essa
classe contÂem estritamente a classe dos cografos e P4-esparsos para os quais o mesmo resultado
havia sido estabelecido. Esse resultado generaliza portanto aqueles resultados. O algoritmo
apresentado usa a decomposicÂËao primeval desses grafos, determinando o parËametro em tempo
linear.
No que se refere `a colorac Ëao de arestas, provamos que o problema de determinar o Âındice
de Grundy Âe NP-completo para grafos em geral e polinomial para grafos caterpillar, implicando
que o nÂumero de Grundy Âe polinomial para os grafos linha desses. Mais especificamente
provamos que o Âındice de Grundy dos caterpillar Âe D ou D+1 e apresentamos um algoritmo
polinomial para determinÂa-lo exatamente. / The vertices and edges colorings problems, which consists in determine the smallest number
of colors needed to color the vertices and edges of a graph, respectively, so that adjacent
vertices and adjacent edges, respectively, have distinct colors, are computationally hard problems
and recurring subject of research in graph theory due to numerous practical problems
they model.
In this work, we study the worst performance of greedy algorithms for coloring vertices and
edges. The greedy algorithm has the following general principle: to receive, one by one, the
vertices (respect. edges) of the graph to be colored by assigning always the smallest possible
color to the vertex (resp. edge) to be colored. We note that so greedy coloring the edges of a
graph is equivalent to greedily coloring its line graph, this being the greatest interest in research
on greedy edges coloring.
The worst performance of the Algorithms is measured by the greatest number of colors they
can use. In the case of greedy vertex coloring, this is the number of Grundy or greedy chromatic
number of the graph. For the edge coloring, this is the greedy chromatic index or Grundy index
of the graph. It is known that determining the Grundy number of any graph is NP-hard. The
complexity of determining the Grundy index of any graph was however an open problem.
In this dissertation, we prove two complexity results. We prove that the Grundy number of
a (q,q−4)-graph can be determined in polynomial time. This class contains strictly the class
of cografos P4-sparse for which the same result had been established. This result generalizes so
those results. The presented algorithm uses the primeval decomposition of graphs, determining
the parameter in linear time.
About greedy edge coloring, we prove that the problem of determining the Grundy index is
NP-complete for general graphs and polynomial for catepillar graphs, implying that the Grundy
number is polynomial for graphs of line of caterpillars. More specifically, we prove that the
Grundy index of a caterpillar is D or D+1 and present a polynomial algorithm to determine it
exactly.
|
5 |
Sur quelques invariants classiques et nouveaux des hypergraphes / On some classical and new hypergraph invariantsMunaro, Andrea 01 December 2016 (has links)
Dans cette thèse, nous considérons plusieurs paramètres des hypergraphes et nous étudions si les restrictions aux sous-classes des hypergraphes permettent d’obtenir des propriétés combinatoires et algorithmiques souhaitables. La plupart des paramètres que nous prenons en compte sont des instances spéciales des packings et transversals des hypergraphes.Dans la première partie, nous allons nous concentrer sur les line graphs des graphes subcubiques sans triangle et nous allons démontrer que pour tous ces graphes il y a un independent set de taille au moins 3|V(G)|/10 et cette borne est optimale. Conséquence immédiate: nous obtenons une borne inférieure optimale pour la taille d’un couplage maximum dans les graphes subcubiques sans triangle. De plus, nous montrons plusieurs résultats algorithmiques liés au FEEDBACK VERTEX SET, HAMILTONIAN CYCLE et HAMILTONIAN PATH quand restreints aux line graphs des graphes subcubiques sans triangle.Puis nous examinons trois hypergraphes ayant la propriété d’Erdős-Pósa et nous cherchons à déterminer les fonctions limites optimales. Tout d’abord, nous apportons une fonction theta-bounding pour la classe des graphes subcubiques et nous étudions CLIQUE COVER: en répondant à une question de Cerioli et al., nous montrons qu’il admet un PTAS pour les graphes planaires. Par la suite, nous nous intéressons à la Conjecture de Tuza et nous montrons que la constante 2 peut être améliorée pour les graphes avec arêtes contenues dans au maximum quatre triangles et pour les graphes sans certains odd-wheels. Enfin, nous nous concentrons sur la Conjecture de Jones: nous la démontrons dans le cas des graphes sans griffes avec degré maximal 4 et nous faisons quelques observations dans le cas des graphes subcubiques.Nous étudions ensuite la VC-dimension de certains hypergraphes résultants des graphes. En particulier, nous considérons l’hypergraphe sur l’ensemble des sommets d’un certain graphe qui est induit par la famille de ses sous-graphes k-connexes. En généralisant les résultats de Kranakis et al., nous fournissons des bornes supérieures et inférieures optimales pour la VC-dimension et nous montrons que son calcul est NP-complet, pour chacun k > 0. Enfin, nous démontrons que ce problème (dans le cas k = 1) et le problème étroitement lié CONNECTED DOMINATING SET sont soit solvables en temps polynomial ou NP-complet, quand restreints aux classes de graphes obtenues en interdisant un seul sous-graphe induit.Dans la partie finale de cette thèse, nous nous attaquons aux meta-questions suivantes: Quand est-ce qu’un certain problème “difficile” de graphe devient “facile”?; Existe-t-il des frontières séparant des instances “faciles” et “difficiles”? Afin de répondre à ces questions, dans le cas des classes héréditaires, Alekseev a introduit la notion de boundary class pour un problème NP-difficile et a montré qu’un problème Pi est NP-difficile pour une classe héréditaire X finiment défini si et seulement si X contient un boundary class pour Pi. Nouscontinuons la recherche des boundary classes pour les problèmes suivants: HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED DOMINATING SET and CONNECTED VERTEX COVER. / In this thesis, we consider several hypergraph parameters and study whether restrictions to subclasses of hypergraphs allow to obtain desirable combinatorial or algorithmic properties. Most of the parameters we consider are special instances of packings and transversals of hypergraphs.In the first part, we focus on line graphs of subcubic triangle-free graphs and show that any such graph G has an independent set of size at least 3|V(G)|/10, the bound being sharp. As an immediate consequence, we obtain a tight lower bound for the matching number of subcubic triangle-free graphs. Moreover, we prove several algorithmic results related to FEEDBACK VERTEX SET, HAMILTONIAN CYCLE and HAMILTONIAN PATH when restricted to line graphs of subcubic triangle-free graphs.Then we consider three hypergraphs having the Erdős-Pósa Property and we seek to determine the optimal bounding functions. First, we provide an optimal theta-bounding function for the class of subcubic graphs and we study CLIQUE COVER: answering a question by Cerioli et al., we show it admits a PTAS for planar graphs. Then we focus on Tuza’s Conjecture and show that the constant 2 in the statement can be improved for graphs whose edges are contained in at most four triangles and graphs obtained by forbidding certain odd-wheels. Finally, we concentrate on Jones’ Conjecture: we prove it in the case of claw-free graphs with maximum degree at most 4 and we make some observations in the case of subcubic graphs.Then we study the VC-dimension of certain set systems arising from graphs. In particular, we consider the set system on the vertex set of some graph which is induced by the family of its k-connected subgraphs. Generalizing results by Kranakis et al., we provide tight upper and lower bounds for the VC-dimension and we show that its computation is NP-complete, for each k > 0. Finally, we show that this problem (in the case k = 1) and the closely related CONNECTED DOMINATING SET are either NP-complete or polynomial-time solvable when restricted to classes of graphs obtained by forbidding a single induced subgraph.In the final part of the thesis, we consider the following meta-questions: When does a certain “hard” graph problem become “easy”?; Is there any “boundary” separating “easy” and “hard” instances? In order to answer these questions in the case of hereditary classes, Alekseev introduced the notion of a boundary class for an NP-hard problem and showed that a problem Pi is NP-hard for a finitely defined (hereditary) class X if and only if X contains a boundary class for Pi. We continue the search of boundary classes for the following problems: HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED DOMINATING SET and CONNECTED VERTEX COVER.
|
6 |
Estudo de casos de complexidade de colorações gulosa de vértices e de arestas / Case studies of complexity of greedy colorings of vertices and edgesOliveira, Ana Karolinna Maia de January 2011 (has links)
OLIVEIRA, Ana Karolinna Maia de. Estudo de casos de complexidade de colorações gulosa de vértices e de arestas. 2011. 58 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2011. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-05-24T19:36:17Z
No. of bitstreams: 1
2011_dis_akmoliveira.pdf: 520341 bytes, checksum: b0c0d48f19d7c3e376c2c79c3a815b08 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-05-24T19:36:55Z (GMT) No. of bitstreams: 1
2011_dis_akmoliveira.pdf: 520341 bytes, checksum: b0c0d48f19d7c3e376c2c79c3a815b08 (MD5) / Made available in DSpace on 2016-05-24T19:36:55Z (GMT). No. of bitstreams: 1
2011_dis_akmoliveira.pdf: 520341 bytes, checksum: b0c0d48f19d7c3e376c2c79c3a815b08 (MD5)
Previous issue date: 2011 / The vertices and edges colorings problems, which consists in determine the smallest number of colors needed to color the vertices and edges of a graph, respectively, so that adjacent vertices and adjacent edges, respectively, have distinct colors, are computationally hard problems and recurring subject of research in graph theory due to numerous practical problems they model. In this work, we study the worst performance of greedy algorithms for coloring vertices and edges. The greedy algorithm has the following general principle: to receive, one by one, the vertices (respect. edges) of the graph to be colored by assigning always the smallest possible color to the vertex (resp. edge) to be colored. We note that so greedy coloring the edges of a graph is equivalent to greedily coloring its line graph, this being the greatest interest in research on greedy edges coloring. The worst performance of the Algorithms is measured by the greatest number of colors they can use. In the case of greedy vertex coloring, this is the number of Grundy or greedy chromatic number of the graph. For the edge coloring, this is the greedy chromatic index or Grundy index of the graph. It is known that determining the Grundy number of any graph is NP-hard. The complexity of determining the Grundy index of any graph was however an open problem. In this dissertation, we prove two complexity results. We prove that the Grundy number of a (q,q−4)-graph can be determined in polynomial time. This class contains strictly the class of cografos P4-sparse for which the same result had been established. This result generalizes so those results. The presented algorithm uses the primeval decomposition of graphs, determining the parameter in linear time. About greedy edge coloring, we prove that the problem of determining the Grundy index is NP-complete for general graphs and polynomial for catepillar graphs, implying that the Grundy number is polynomial for graphs of line of caterpillars. More specifically, we prove that the Grundy index of a caterpillar is D or D+1 and present a polynomial algorithm to determine it exactly. / Os problemas de colorac¸ ˜ao de v´ertices e de arestas, que consistem em determinar o menor n´umero de cores necess´arias para colorir os v´ertices e arestas de um grafo, respectivamente, de forma que v´ertices adjacentes e arestas adjacentes, respectivamente, possuem cores distintas, s˜ao problemas computacionalmente dif´ıceis e s˜ao objeto de pesquisa recorrente em teoria do grafos em virtude de in´umeros problemas pr´aticos que eles modelam. No presente trabalho, estudamos o pior desempenho dos algoritmos gulosos de colorac¸ ˜ao de v´ertices e de arestas. O algoritmo guloso tem o seguinte princ´ıpio geral: receber, um a um, os v´ertices (respect. as arestas) do grafo a ser colorido, atribuindo sempre a menor cor poss´ıvel ao v´ertice (resp. aresta) a ser colorido. Observamos que colorir de forma gulosa as arestas de um grafo equivale a colorir de forma gulosa o seu grafo linha, tendo sido este o maior interesse na pesquisa em colorac¸ ˜ao gulosa de arestas. O pior desempenho dos algoritmos ´e medido pelo maior n´umero de cores que eles podem utilizar. No caso da colorac¸ ˜ao gulosa de v´ertices, esse ´e o n´umero de Grundy ou n´umero crom´atico guloso do grafo. No caso da colorac¸ ˜ao de arestas, esse ´e o ´ındice crom´atico guloso ou ´ındice de Grundy do grafo. Sabe-se que determinar o n´umero de Grundy de um grafo qualquer ´e NP-dif´ıcil. A complexidade de determinar o ´ındice de Grundy de um grafo qualquer era entretanto um problema em aberto. Na presente dissertac¸ ˜ao, provamos dois resultados de complexidade. Provamos que o n´umero de Grundy de um grafo (q,q−4) pode ser determinado em tempo polinomial. Essa classe cont´em estritamente a classe dos cografos e P4-esparsos para os quais o mesmo resultado havia sido estabelecido. Esse resultado generaliza portanto aqueles resultados. O algoritmo apresentado usa a decomposic¸˜ao primeval desses grafos, determinando o parˆametro em tempo linear. No que se refere `a colorac¸ ˜ao de arestas, provamos que o problema de determinar o ´ındice de Grundy ´e NP-completo para grafos em geral e polinomial para grafos caterpillar, implicando que o n´umero de Grundy ´e polinomial para os grafos linha desses. Mais especificamente provamos que o ´ındice de Grundy dos caterpillar ´e D ou D+1 e apresentamos um algoritmo polinomial para determin´a-lo exatamente.
|
7 |
Boxicity And Cubicity : A Study On Special Classes Of GraphsMathew, Rogers 01 1900 (has links) (PDF)
Let F be a family of sets. A graph G is an intersection graph of sets from the family F if there exists a mapping f : V (G)→ F such that, An interval graph is an intersection graph of a family of closed intervals on the real line. Interval graphs find application in diverse fields ranging from DNA analysis to VLSI design.
An interval on the real line can be generalized to a k dimensional box or k-box. A k-box B = (R1.R2….Rk) is defined to be the Cartesian product R1 × R2 × …× Rk, where each Ri is a closed interval on the real line. If each Ri is a unit length interval, we call B a k-cube. Thus, an interval is a 1-box and a unit length interval is a 1-cube. A graph G has a k-box representation, if G is an intersection graph of a family of k-boxes in Rk. Similarly, G has a k-cube representation, if G is an intersection graph of a family of k-cubes in Rk. The boxicity of G, denoted by box(G), is the minimum positive integer k such that G has a k-box representation. Similarly, the cubicity of G, denoted by cub(G), is the minimum
positive integer k such that G has a k-cube representation. Thus, interval graphs are the graphs with boxicity equal to 1 and unit interval graphs are the graphs with cubicity equal to 1.
The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969. Deciding whether the boxicity (or cubicity) of a graph is at most k is NP-complete even for a small positive integer k. Box representation of graphs finds application in niche overlap (competition) in ecology and to problems of fleet maintenance in operations research. Given a low dimensional box representation, some well known NP-hard problems become polynomial time solvable.
Attempts to find efficient box and cube representations for special classes of graphs can be seen in the literature. Scheinerman [6] showed that the boxicity of outerplanar graphs is at most 2. Thomassen [7] proved that the boxicity of planar graphs is bounded from above by 3. Cube representations of special classes of graphs like hypercubes and complete multipartite graphs were investigated in [5, 3, 4]. In this thesis, we present several bounds for boxicity and cubicity of special classes of graphs in terms of other graph parameters. The following are the main results shown in this work.
1. It was shown in [2] that, for a graph G with maximum degree Δ, cub(G) ≤ [4(Δ+ 1) log n]. We show that, for a k-degenerate graph G, cub(G) ≤ (k + 2)[2e log n]. Since k is at most Δ and can be much lower, this clearly is a stronger result. This bound is tight up to a constant factor.
2. For a k-degenerate graph G, we give an efficient deterministic algorithm that runs in O(n2k) time to output an O(k log n) dimensional cube representation.
3. Crossing number of a graph G is the minimum number of crossing pairs of edges, over all drawings of G in the plane. We show that if crossing number of G is t, then box(G) is O(t1/4 log3/4 t). This bound is tight up to a factor of O((log t)1/4 ).
4. We prove that almost all graphs have cubicity O(dav log n), where dav denotes the average degree.
5. Boxicity of a k-leaf power is at most k -1. For every k, there exist k-leaf powers whose boxicity is exactly k - 1. Since leaf powers are a subclass of strongly chordal graphs, this result implies that there exist strongly chordal graphs with arbitrarily high boxicity
6. Otachi et al. [8] conjectured that chordal bipartite graphs (CBGs) have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of CBGs that have unbounded boxicity. We first prove that the bipartite power of a tree (which is a CBG) is a CBG and then show that there exist trees whose bipartite powers have high boxicity. Later in Chapter ??, we prove a more generic result in bipartite powering. We prove that, for every k ≥ 3, the bipartite power of a bipartite, k-chordal graph is bipartite and k-chordal thus implying that CBGs are closed under bipartite powering.
7. Boxicity of a line graph with maximum degree Δ is O(Δ log2 log2 Δ). This is a log2 Δ
log log Δ
factor improvement over the best known upper bound for boxicity of any graph [1]. We also prove a non-trivial lower bound for the boxicity of a d-dimensional hypercube.
|
8 |
Problèmes de placement, de coloration et d’identification / On packing, colouring and identification problemsValicov, Petru 09 July 2012 (has links)
Dans cette thèse, nous nous intéressons à trois problèmes issus de l'informatique théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration dite "forte" d'arêtes des graphes et les codes identifiants dans les graphes. L'OPP consiste à décider si un ensemble d'items rectangulaires peut être placé sans chevauchement dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte supplémentaire est prise en compte, à savoir l'interdiction de rotation des items. Le problème est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes d'intervalles, proposée par Fekete et Schepers. L'algorithme est exact et utilise les MPQ-arbres - structures de données qui encodent ces graphes de manière compacte tout en capturant leurs propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les comparant aux performances d'autres algorithmes existants. L'étude de la coloration forte d'arêtes et des codes identifiants porte sur les aspects structurels et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d'arêtes nous nous intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques. Nous montrons des bornes optimales pour l'indice chromatique fort des graphes subcubiques en fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du problème de décision associé, en prouvant qu'il est NP-complet dans des sous-classes restreintes des graphes planaires subcubiques.La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum ID est n-1, où n est l'ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons des bornes inférieures et supérieures serrées pour le paramètre ID dans cette classe. Finalement, nous montrons qu'il existe un algorithme linéaire de calcul de ID dans la classe des graphes adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes parfaits. / In this thesis we study three theoretical computer science problems, namely the orthogonal packing problem (OPP for short), strong edge-colouring and identifying codes.OPP consists in testing whether a set of rectangular items can be packed in a rectangular container without overlapping and without exceeding the borders of this container. An additional constraint is that the rotation of the items is not allowed. The problem is NP-hard even when the problem is reduced to packing squares in a square. We propose an exact algorithm for solving OPP efficiently using the characterization of the problem by interval graphs proposed by Fekete and Schepers. For this purpose we use some compact representation of interval graphs - MPQ-trees. We show experimental results of our approach by comparing them to the results of other algorithms known in the literature. we observe promising gains.The study of strong edge-colouring and identifying codes is focused on the structural and computational aspects of these combinatorial problems. In the case of strong edge-colouring we are interested in the families of planar graphs and subcubic graphs. We show optimal upper bounds for the strong chromatic index of subcubic graphs as a function of the maximum average degree. We also show that every planar subcubic graph without induced cycles of length 4 and 5 can be strong edge-coloured with at most nine colours. Finally, we confirm the difficulty of the problem by showing that it remains NP-complete even in some restricted classes of planar subcubic graphs.For the subject of identifying codes we propose a characterization of non-trivial graphs having maximum identifying code number ID, that is n-1, where n is the number of vertices. We study the case of line graphs and prove lower and upper bounds for ID parameter in this class. At last we investigate the complexity of the corresponding decision problem and show the existence of a linear algorithm for computing ID of the line graph L(G) where G has the size of the tree-width bounded by a constant. On the other hand, we show that the identifying code problem is NP-complete in various subclasses of planar graphs.
|
Page generated in 0.0601 seconds