• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Verifying a Quantitative Relaxation of Linearizability via Refinement

Adhikari, Kiran 13 June 2013 (has links)
Concurrent data structures have found increasingly widespread use in both multicore and distributed computing environments, thereby escalating the priority for verifying their correctness. The thread safe behavior of these concurrent objects is often described using formal semantics known as linearizability, which requires that  every operation in a concurrent object appears to take effect between its invocation and response. Quasi linearizability is a quantitative relaxation of linearizability to allow more implementation freedom for performance optimization.  However, ensuring the quantitative aspects of this new correctness condition is an arduous task. We propose the first method for formally verifying quasi linearizability of the implementation model of a concurrent data structure. The method is based on checking the refinement relation between the implementation model and a specification model via explicit state model checking. It can directly handle multi-threaded programs where each thread can make infinitely many method calls, without requiring the user to manually annotate for the linearization points. We have implemented and evaluated our method in the PAT model checking toolkit.  Our experiments show that the method is effective in verifying quasi linearizability and in detecting its violations. / Master of Science
2

Time Bounds for Shared Objects in Partially Synchronous Systems

Wang, Jiaqi 2011 December 1900 (has links)
Shared objects are a key component in today's large distributed systems. Linearizability is a popular consistency condition for such shared objects which gives the illusion of sequential execution of operations. The time bound of an operation is the worst-case time complexity from the operation invocation to its response. Some time bounds have been proved for certain operations on linearizable shared objects in partially synchronous systems but there are some gaps between time upper bound and lower bound for each operation. In this work, the goal is to narrow or eliminate the gaps and find optimally fast implementations. To reach this goal, we prove larger lower bounds and show smaller upper bounds (compared to 2d for all operations in previous folklore implementations) by proposing an implementation for a shared object with an arbitrary data type in distributed systems of n processes in which every message delay is bounded within [d-u, d] and the maximum skew between processes' clocks is epsilon. Considering any operation for which there exist two instances such that individually, each instance is legal but in sequence they are not, we prove a lower bound of d + min{epsilon, u, d/3}, improving from d, and show this bound is tight when epsilon < d/3 and epsilon < u. Considering any operation for which there exist k instances such that each instance separately is legal and any sequence of them is legal, but the state of the object is different after different sequences, we prove a lower bound of (1-1/k)u, improving from u/2, and show this bound is tight when k = n. A pure mutator only modifies the object but does not return anything about the object. A pure accessor does not modify the object. For a pure mutator OP1 and a pure accessor OP2, if given a set of instances of OP1, the state of the object reflects the order in which the instances occur and an instance of OP2 can detect whether an instance of OP1 occurs, we prove the sum of the time bound for OP1 and OP2 is at least d + min{epsilon, u, d/3}, improving from d. The upper bound is d + 2*epsilon from our implementation.
3

Detecting Persistence Bugs from Non-volatile Memory Programs by Inferring Likely-correctness Conditions

Fu, Xinwei 10 March 2022 (has links)
Non-volatile main memory (NVM) technologies are revolutionizing the entire computing stack thanks to their storage-and-memory-like characteristics. The ability to persist data in memory provides a new opportunity to build crash-consistent software without paying a storage stack I/O overhead. A crash-consistent NVM program can recover back to a consistent state from a persistent NVM in the event of a software crash or a sudden power loss. In the presence of a volatile cache, data held in a volatile cache is lost after a crash. So NVM programming requires users to manually control the durability and the persistence ordering of NVM writes. To avoid performance overhead, developers have devised customized persistence mechanisms to enforce proper persistence ordering and atomicity guarantees, rendering NVM programs error-prone. The problem statement of this dissertation is how one can effectively detect persistence bugs from NVM programs. However, detecting persistence bugs in NVM programs is challenging because of the huge test space and the manual consistency validation required. The thesis of this dissertation is that we can detect persistence bugs from NVM programs in a scalable and automatic manner by inferring likely-correctness conditions from programs. A likely-correctness condition is a possible correctness condition, which is a condition a program must maintain to make the program crash-consistent. This dissertation proposes to infer two forms of likely-correctness conditions from NVM programs to detect persistence bugs. The first proposed solution is to infer likely-ordering and likely-atomicity conditions by analyzing program dependencies among NVM accesses. The second proposed solution is to infer likely-linearization points to understand a program's operation-level behavior. Using these two forms of likely-correctness conditions, we test only those NVM states and thread interleavings that violate the likely-correctness conditions. This significantly re- duces the test space required to examine. We then leverage the durable linearizability model to validate consistency automatically without manual consistency validation. In this way, we can detect persistence bugs from NVM programs in a scalable and automatic manner. In total, we detect 47 (36 new) persistence correctness bugs and 158 (113 new) persistence performance bugs from 20 single-threaded NVM programs. Additionally, we detect 27 (15 new) persistence correctness bugs from 12 multi-threaded NVM data structures. / Doctor of Philosophy / Non-volatile main memory (NVM) technologies provide a new opportunity to build crash-consistent software without incurring a storage stack I/O overhead. A crash-consistent NVM program can recover back to a consistent state from a persistent NVM in the event of a software crash or a sudden power loss. NVM has been and will further be used in various computing services integral to our daily life, ranging from data centers to high-performance computing, machine learning, and banking. Building correct and efficient crash-consistent NVM software is therefore crucial. However, developing a correct and efficient crash-consistent NVM program is challenging as developers are now responsible for manually controlling cacheline evictions in NVM programming. Controlling cacheline evictions makes NVM programming error-prone, and detecting persistence bugs that lead to inconsistent NVM states in NVM programs is an arduous task. The thesis of this dissertation is that we can detect persistence bugs from NVM programs in a scalable and automatic manner by inferring likely-correctness conditions from programs. This dissertation proposes to infer two forms of likely-correctness conditions from NVM programs to detect persistence bugs, i.e., likely-ordering/atomicity conditions and likely-linearization points. In total, we detect 47 (36 new) persistence correctness bugs and 158 (113 new) persistence performance bugs from 20 single-threaded NVM programs. Additionally, we detect 27 (15 new) persistence correctness bugs from 12 multi-threaded NVM data structures.
4

Analysis, measurement and cancellation of the bandwidth and amplitude dependence of intermodulation distortion in RF power amplifiers

Vuolevi, J. (Joel) 05 October 2001 (has links)
Abstract The main emphasis in modern RF power amplifier (PA) research is on improving linearity while at the same time maintaining reasonably good efficiency, for which purpose external linearization in the form of feedforward or predistortion is often used. Linearity and linearization can be considered from both a fundamental signal (amplitude and phase conversions, AM-AM &amp; AM-PM) and an intermodulation distortion (IMD) regeneration point of view, and since a study of intermodulation gives more information on the behaviour of an amplifier, linearity is studied in this thesis by analysing the amplitude and phase of IM components under varying signal conditions, i.e. as functions of temperature, modulation bandwidth and amplitude. To study the behaviour of IM components analytically, a Volterra model including electro-thermal distortion mechanisms is developed and a simulation technique is introduced to determine how easily the amplifier can be linearized. An S-parameter characterization method for extracting the Volterra model and the simulation model is developed, and the amplitude and phase dependences of the IM components are shown by means of measurements performed by a novel technique developed here. The results show that the behaviour of IM components is more complicated than had commonly been expected. Three techniques are developed for eliminating the frequency dependence of IM components, impedance optimization, envelope filtering and envelope injection. In the envelope injection technique, a low frequency envelope signal is added to the input of the amplifier in order to improve both the bandwidth and amplitude range of the memoryless predistortion. The functionality of envelope injection is demonstrated by Volterra calculations, simulations and measurements, and the technique is applied to 1W, 1.8 GHz common-emitter BJT and common-source MESFET amplifiers. IM cancellation better than 20 dB is achieved over a wide range of bandwidths and amplitudes. It is concluded that an inherently linear amplifier is not necessarily easy to linearize any further using external techniques, but that the part of the distortion that varies with bandwidth and amplitude can be cancelled out using envelope injection and the remaining memoryless distortion by means of a simple polynomial RF predistorter. This results in good cancellation of distortion, and since both envelope injection and RF predistortion consume little power, both good efficiency and linearity can be achieved.
5

Runtime Verification and Debugging of Concurrent Software

Zhang, Lu 29 July 2016 (has links)
Our reliance on software has been growing fast over the past decades as the pervasive use of computer and software penetrated not only our daily life but also many critical applications. As the computational power of multi-core processors and other parallel hardware keeps increasing, concurrent software that exploit these parallel computing hardware become crucial for achieving high performance. However, developing correct and efficient concurrent software is a difficult task for programmers due to the inherent nondeterminism in their executions. As a result, concurrency related software bugs are among the most troublesome in practice and have caused severe problems in recent years. In this dissertation, I propose a series of new and fully automated methods for verifying and debugging concurrent software. They cover the detection, prevention, classification, and repair of some important types of bugs in the implementation of concurrent data structures and client-side web applications. These methods can be adopted at various stages of the software development life cycle, to help programmers write concurrent software correctly as well as efficiently. / Ph. D.
6

Designing, Modeling, and Optimizing Transactional Data Structures

Hassan, Ahmed Mohamed Elsayed 25 September 2015 (has links)
Transactional memory (TM) has emerged as a promising synchronization abstraction for multi-core architectures. Unlike traditional lock-based approaches, TM shifts the burden of implementing threads synchronization from the programmer to an underlying framework using hardware (HTM) and/or software (STM) components. Although TM can be leveraged to implement transactional data structures (i.e., those where multiple operations are allowed to execute atomically, all-or-nothing, according to the transaction paradigm), its intensive speculation may result in significantly lower performance than the optimized concurrent data structures. This poor performance motivates the need to find other, more effective, alternatives for designing transactional data structures without losing the simple programming abstraction proposed by TM. To do so, we identified three major challenges that need to be addressed to design efficient transactional data structures. The first challenge is composability, namely allowing an atomic execution of two or more data structure operations in the same way as TM provides, but without its high overheads. The second challenge is integration, which enables the execution of data structure operations within generic transactions that may contain other memory- based operations. The last challenge is modeling, which encompasses the necessity of defining a unified formal methodology to reason about the correctness of transactional data structures. In this dissertation, we propose different approaches to address the above challenges. First, we address the composability challenge by introducing an optimistic methodology to effi- ciently convert concurrent data structures into transactional ones. Second, we address the integration challenge by injecting the semantic operations of those transactional data struc- ture into TM frameworks, and by presenting two novel STM algorithms in order to enhance the overall performance of those frameworks. Finally, we address the modeling challenge by presenting two models for concurrent and transactional data structures designs. • Our first main contribution in this dissertation is Optimistic transactional boosting (OTB), a methodology to design transactional versions of the highly concurrent optimistic (i.e., lazy) data structures. An earlier (pessimistic) boosting proposal added a layer of abstract locks on top of existing concurrent data structures. Instead, we propose an optimistic boosting methodology, which allows greater data structure-specific optimizations, easier integration with TM frameworks, and lower restrictions on the operations than the original (more pessimistic) boosting methodology. Based on the proposed OTB methodology, we implement the transactional version of two list-based data structures (i.e., set and priority queue). Then, we present TxCF-Tree, a balanced tree whose design is optimized to support transactional accesses. The core optimizations of TxCF-Tree's operations are: providing a traversal phase that does not use any lock and/or speculation and deferring the lock acquisition or physical modification to the transaction's commit phase; isolating the structural operations (such as re-balancing) in an interference-less housekeeping thread; and minimizing the interference between structural operations and the critical path of semantic operations (i.e., additions and removals on the tree). • Our second main contribution is to integrate OTB with both STM and HTM algorithms. For STM, we extend the design of both DEUCE, a Java STM framework, and RSTM, a C++ STM framework, to support the integration with OTB. Using our extension, programmers can include both OTB data structure operations and traditional memory reads/writes in the same transaction. Results show that OTB performance is closer to the optimal lazy (non-transactional) data structures than the original boosting algorithm. On the HTM side, we introduce a methodology to inject semantic operations into the well-known hybrid transactional memory algorithms (e.g., HTM-GL, HyNOrec, and NOre- cRH). In addition, we enhance the proposed semantically-enabled HTM algorithms with a lightweight adaptation mechanism that allows bypassing the HTM paths if the overhead of the semantic operations causes repeated HTM aborts. Experiments on micro- and macro- benchmarks confirm that our proposals outperform the other TM solutions in almost all the tested workloads. • Our third main contribution is to enhance the performance of TM frameworks in gen- eral by introducing two novel STM algorithms. Remote Transaction Commit (RTC) is a mechanism for executing commit phases of STM transactions in dedicated server cores. RTC shows significant improvements compared to its corresponding validation based STM algorithm (up to 4x better) as it decreases the overhead of spin locking during commit, in terms of cache misses, blocking of lock holders, and CAS operations. Remote Inval- idation (RInval) applies the same idea of RTC on invalidation based STM algorithms. Furthermore, it allows more concurrency by executing commit and invalidation routines concurrently in different servers. RInval performs up to 10x better than its corresponding invalidation based STM algorithm (InvalSTM), and up to 2x better than its corresponding validation-based algorithm (NOrec). • Our fourth and final main contribution is to provide a theoretical model for concurrent and transactional data structures. We exploit the similarities of the OTB-based data structures and provide a unified model to reason about the correctness of those designs. Specifically, we extend a recent approach that models data structures with concurrent readers and a single writer (called SWMR), and we propose two novel models that additionally allow multiple writers and transactional execution. Those models are more practical because they cover a wider set of data structures than the original SWMR model. / Ph. D.
7

Programming Model and Protocols for Reconfigurable Distributed Systems

Arad, Cosmin January 2013 (has links)
Distributed systems are everywhere. From large datacenters to mobile devices, an ever richer assortment of applications and services relies on distributed systems, infrastructure, and protocols. Despite their ubiquity, testing and debugging distributed systems remains notoriously hard. Moreover, aside from inherent design challenges posed by partial failure, concurrency, or asynchrony, there remain significant challenges in the implementation of distributed systems. These programming challenges stem from the increasing complexity of the concurrent activities and reactive behaviors in a distributed system on the one hand, and the need to effectively leverage the parallelism offered by modern multi-core hardware, on the other hand. This thesis contributes Kompics, a programming model designed to alleviate some of these challenges. Kompics is a component model and programming framework for building distributed systems by composing message-passing concurrent components. Systems built with Kompics leverage multi-core machines out of the box, and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic execution replay for debugging, testing, and reproducible behavior evaluation for large-scale Kompics distributed systems. The same system code is used for both simulation and production deployment, greatly simplifying the system development, testing, and debugging cycle. We highlight the architectural patterns and abstractions facilitated by Kompics through a case study of a non-trivial distributed key-value storage system. CATS is a scalable, fault-tolerant, elastic, and self-managing key-value store which trades off service availability for guarantees of atomic data consistency and tolerance to network partitions. We present the composition architecture for the numerous protocols employed by the CATS system, as well as our methodology for testing the correctness of key CATS algorithms using the Kompics simulation framework. Results from a comprehensive performance evaluation attest that CATS achieves its claimed properties and delivers a level of performance competitive with similar systems which provide only weaker consistency guarantees. More importantly, this testifies that Kompics admits efficient system implementations. Its use as a teaching framework as well as its use for rapid prototyping, development, and evaluation of a myriad of scalable distributed systems, both within and outside our research group, confirm the practicality of Kompics. / Kompics / CATS / REST
8

Programming Model and Protocols for Reconfigurable Distributed Systems

Arad, Cosmin Ionel January 2013 (has links)
Distributed systems are everywhere. From large datacenters to mobile devices, an ever richer assortment of applications and services relies on distributed systems, infrastructure, and protocols. Despite their ubiquity, testing and debugging distributed systems remains notoriously hard. Moreover, aside from inherent design challenges posed by partial failure, concurrency, or asynchrony, there remain significant challenges in the implementation of distributed systems. These programming challenges stem from the increasing complexity of the concurrent activities and reactive behaviors in a distributed system on the one hand, and the need to effectively leverage the parallelism offered by modern multi-core hardware, on the other hand. This thesis contributes Kompics, a programming model designed to alleviate some of these challenges. Kompics is a component model and programming framework for building distributed systems by composing message-passing concurrent components. Systems built with Kompics leverage multi-core machines out of the box, and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic execution replay for debugging, testing, and reproducible behavior evaluation for largescale Kompics distributed systems. The same system code is used for both simulation and production deployment, greatly simplifying the system development, testing, and debugging cycle. We highlight the architectural patterns and abstractions facilitated by Kompics through a case study of a non-trivial distributed key-value storage system. CATS is a scalable, fault-tolerant, elastic, and self-managing key-value store which trades off service availability for guarantees of atomic data consistency and tolerance to network partitions. We present the composition architecture for the numerous protocols employed by the CATS system, as well as our methodology for testing the correctness of key CATS algorithms using the Kompics simulation framework. Results from a comprehensive performance evaluation attest that CATS achieves its claimed properties and delivers a level of performance competitive with similar systems which provide only weaker consistency guarantees. More importantly, this testifies that Kompics admits efficient system implementations. Its use as a teaching framework as well as its use for rapid prototyping, development, and evaluation of a myriad of scalable distributed systems, both within and outside our research group, confirm the practicality of Kompics. / <p>QC 20130520</p>

Page generated in 0.0583 seconds