• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 918
  • 711
  • 195
  • 135
  • 35
  • 34
  • 32
  • 17
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 4
  • Tagged with
  • 2564
  • 335
  • 286
  • 273
  • 264
  • 193
  • 191
  • 187
  • 180
  • 176
  • 174
  • 172
  • 163
  • 156
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Změny lipidového spektra během redukce hmotnosti pacientů s diabetes mellitus / Changes of lipid spectrum during body mass reduction in patients with diabetes mellitus

Šmídová, Barbora January 2013 (has links)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Bc. Barbora Šmídová Supervisor: Prof. MUDr. Jaroslav Dršata, CSc. Supervisor - specialist: RNDr. Mgr. Alena Tichá, PhD. Title of diploma thesis: CHANGES OF LIPID SPECTRUM DURING BODY MASS REDUCTION IN PATIENTS WITH DIABETES MELLITUS The thesis deals with the determination of lipid parameters (plasma total fatty acids, plasma total cholesterol, lipoprotein cholesterol, plasma triglycerides, plasma cholesterol precursors (lathosterol and squalene) and markers of cholesterol absorption (β-sitosterol and campesterol)) in obese patiens with diabetes mellitus type 1 and type 2 who were tested with a seven-day fasting, followed by low-calorie diabetic diet. It is assumed that weight loss should improve insulin resistence. The aim of this work is to evaluate the lipid parameters during the body weight reduction in obese patients suffering with diabetes mellitus. Lipids were determined before and after a seven-day fasting and after one month from the beginning of fasting (in patiens with diabetes mellitus type 1 also after one year). Gas chromatography was used for the determination of fatty acids and non-cholesterol sterols and squalene. Cholesterol and triglycerides were determined by a routine...
732

Vliv lipidového složení membrány na odolnost vůči surfaktinu / Effect of membrane lipid composition on resistance against surfactin

Pinkas, Dominik January 2015 (has links)
Surfactin is an antibiotic produced by several strains of B. subtilis. Its broad range of biological activities is interesting from perspective of medicine, food industry and bioremediation and is based on its surface-active properties and interaction with biological membranes. The latter means mainly forming ion channels, conductive pores and with increasing concentration eventually disrupting membrane structure in detergent-like manner. Mechanism of resistance of producing strain against its own toxic product is not yet fully understood. This work shows that it could be based on surfactin target modification - which means altering membrane lipid composition. We were able to recognize surfactin-formed ion channels or pores with a broad range of conductivities spanning from 2 pS to 2 nS using BLM method. Liposome leakage assay with carboxyfluorescein revealed few distinct mechanisms of lysis, differing in amplitude, rate of lysis and cooperativity. Increased content of anionic lipids with conical shape, namely cardiolipin and phosphatidic acid led to substantial increased membrane resistance to surfactin-induced permeabilization. Key words: membrane, surfactin, Bacillus subtilis, cardiolipin, black lipid membranes, liposomes
733

I. Development of Rapid Conductance-Based Protocols for Measuring Ion Channel Activity; II. Expression, Characterization, and Purification of the ATP-Sensitive, Inwardly-Rectifying K+ Channel, Kir6.2, and Ion Channel-Coupled Receptors

Agasid, Mark Tadashi, Agasid, Mark Tadashi January 2017 (has links)
Ligand-gated and ligand-modulated ion channel (IC) sensors have received increased attention for their ability to transduce ligand-binding events into a readily measurable electrical signal. Ligand-binding to an IC modulates the ion flux properties of the channel in label-free manner, often with single-molecule sensitivity and selectivity. As a result, ICs are attractive sensing elements in biosensoring platforms, especially for ligands lacking optical (e.g. fluorescent) or electrochemical properties. Despite the growing number of available ligand-gated and ligand-modulated ICs and artificial lipid bilayer platforms for IC reconstitution, significant work remains in defining the analytical performance capabilities of IC sensors. Particularly, few studies have described platforms for making measurements with rapid temporal resolution and high sensitivity. In this work, we describe an artificial lipid bilayer platform which enables rapid measurement of ion channel activity, a key parameter for developing IC sensors suitable for studying biological events, e.g. single cell exocytosis (Chapter 2 and 3). Additionally, we developed expression, purification, and reconstitution protocols for Kir6.2, a model ligand-gated ion channel, for use in sensor development (Chapter 4). The final goal is to reconstitute ion channel-coupled receptors (ICCRs), G protein-coupled receptor-Kir6.2 fusion proteins, into artificial lipid bilayers to detect small molecules and hormones targeting GPCRs. Towards this goal, we characterized the expression and function of two ICCRs, M2-Kir and D2-Kir, in HEK293 cells (Chapter 5).
734

Computational studies of talin-mediated integrin activation

Kalli, Antreas C. January 2013 (has links)
Integrins are large heterodimeric (αβ) cell surface receptors that play a key role in the formation of focal adhesion complexes and are involved in various signal transduction pathways. They are ‘activated’ to a high affinity state by the formation of an intracellular complex between the membrane, the integrin β-subunit tail and talin, a process known as ‘inside-out activation’. The head domain of talin, a FERM domain homologue, plays a vital role in the formation of this complex. Recent studies also suggest that kindlins act in synergy with talin to induce integrin activation. Despite much available structural and functional data, details of how talin activates integrins remain elusive. In this thesis a multiscale simulation approach (using a combination of coarse-grained and atomistic molecular dynamics simulations) together with NMR experiments were employed to study talin-mediated integrin inside-out activation. A number of novel insights emerged from these studies including: (i) the crucial role of negatively charged lipids in talin/membrane association; (ii) a novel V-shape conformation of the talin head domain which optimizes its interactions with negatively charged lipids; (iii) that interactions of talin with negatively charged moieties in the membrane orient talin to optimize interactions with the β cytoplasmic tail; (iv) that binding of talin to the β cytoplasmic tail promotes rearrangement of the integrin TM helices and weakens the integrin α/β association; and (v) that an increase in the tilt angle of the β integrin TM helix initiates a scissoring movement of the two integrin TM helices. These results, combined with experimental data, provide new insights into the mechanism of integrin inside-out activation. The same multiscale approach was used to demonstrate the crucial role of the Gx3G motif in the packing of the integrin transmembrane helices. Using recent structural data the integrin/talin complex was modelled and inserted in bilayers which resemble the biological plasma membrane. The results demonstrate the dynamic nature of the integrin receptor and suggest that the integrin/talin complex alters the lipid organization and motion in the outer and inner bilayer leaflets in an asymmetric way and that diffusion of lipids in the vicinity of the protein is slowed down. The work in this thesis demonstrates that multiscale simulations have considerable strengths when applied to investigations of structure/function relationships in membrane proteins.
735

Lipid profiles in wheat cultivars resistant and susceptible to tan spot and the effect of disease on the profiles

Kim, Dong Won January 1900 (has links)
Master of Science / Department of Plant Pathology / William W. Bockus / The effects of tan spot on lipid profiles in wheat leaves were quantified by mass spectrometry. Inoculation with Pyrenophora tritici-repentis significantly reduced the amount of many lipids, including the major lipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in leaves over time. These two lipids accounted for 89% of the mass spectral signal of detected lipids in wheat leaves. Reductions in amounts of lipids were at much higher rates over time for susceptible cultivars compared with resistant cultivars. Furthermore, data show that cultivars resistant to tan spot have different lipid profiles when compared with susceptible cultivars. Resistant cultivars had more MGDG and DGDG than susceptible ones, even in non-inoculated leaves. Using linear models that were fit to data, non-inoculated cultivars with a rating of 1 (highly resistant to tan spot) were calculated to have 66.1% more MGDG and 52.7% more DGDG signal than cultivars with a rating of 9 (highly susceptible). These latter findings are indirect evidence that the amounts of some lipids in wheat leaves may be determining factors in the resistance response of cultivars to tan spot.
736

Computer Simulations of Membrane–Sugar Interactions

Kapla, Jon January 2016 (has links)
Carbohydrate molecules are essential parts of living cells. They are used as energy storage and signal substances, and they can be found incorporated in the cell membranes as attachments to glycoproteins and glycolipids, but also as free molecules. In this thesis the effect of carbohydrate molecules on phospholipid model membranes have been investigated by the means of Molecular Dynamics (MD) computer simulations. The most abundant glycolipid in nature is the non-bilayer forming monogalactosyldiacylglycerol (MGDG). It is known to be important for the membrane stacking typical for the thylakoid membranes in plants, and has also been found essential for processes related to photosynthesis. In Paper I, MD simulations were used to characterize structural and dynamical changes in a lipid bilayer when MGDG is present. The simulations were validated by direct comparisons between dipolar couplings calculated from the MD trajectories, and those determined from NMR experiments on similar systems. We could show that most structural changes of the bilayer were a consequence of lipid packing and the molecular shape of MGDG. In certain plants and organisms, the enrichment of small sugars such as sucrose and trehalose close to the membrane interfaces, are known to be one of the strategies to survive freezing and dehydration. The cryoprotecting abilities of these sugar molecules are long known, but the mechanisms at the molecular level are still debated. In Papers II–IV, the interactions of trehalose with a lipid bilayer were investigated. Calculations of structural and dynamical properties, together with free energy calculations, were used to characterize the effect of trehalose on bilayer properties. We could show that the binding of trehalose to the lipid bilayer follows a simple two state binding model, in agreement with recent experimental investigations, and confirm some of the proposed hypotheses for membrane–sugar interactions. The simulations were validated by dipolar couplings from our NMR investigations of TRH in a dilute liquid crystal (bicelles). Furthermore, the assumption about molecular structure being equal in the ordered and isotropic phases was tested and verified. This assumption is central for the interpretation of experimentally determined dipolar couplings in weakly ordered systems. In addition, a coarse grain model was used to tackle some of the problems with slow dynamics that were encountered for trehalose in interaction with the bilayer. It was found that further developments of the interaction models are needed to properly describe the membrane–sugar interactions. Lastly, from investigations of trehalose curvature sensing, we concluded that it preferably interacts in bilayer regions with high negative curvature. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
737

Nanopartículas lipídicas sólidas encapsulando curcuminoides (NLS-CT): estudos in vitro e in vivo / Solid lipid nanoparticles encapsulating curcuminoids (SLN-TC): in vitro and in vivo studies

Zamarioli, Cristina Mara 21 May 2018 (has links)
Objetivos: Etapa 1 - avaliar características organolépticas e físico-químicas de formulações tópicas contendo nanopartículas lipídicas sólidas encapsulando curcuminoides; Etapa 2 - avaliar a citotoxicidade das nanopartículas lipídicas sólidas e dos curcuminoides encapsulados em nanopartículas lipídicas sólidas ou não em cultura de células de fibroblastos e queratinócitos com ou sem serem submetidos a RI; avaliar a atividade alergênica dos curcuminoides encapsulados em nanopartículas lipídicas sólidas ou não encapsulados; Etapa 3 - avaliar a toxicidade aguda de uma formulação contendo curcuminoides encapsulados em nanopartículas lipídicas sólidas na pele e em órgãos-alvo de camundongos BALB após 21 dias de aplicação tópica; induzir radiodermite em camundongos BALB; avaliar o efeito de formulações tópicas contendo curcuminoides encapsulados em nanopartículas lipídicas sólidas na prevenção e no tratamento de radiodermite, em camundongos BALB. Método: Etapa 1 - inspeção visual, cor, sensibilidade ao tato e odor, quantificação do pH, análise do comportamento reológico e quantificação de ativo (curcuminoides) das formulações; Etapa 2 - avaliação da viabilidade celular de queratinócitos, fibroblastos e mastócitos, quantificação da % de liberação da enzima ?-hexosaminidade em mastócitos; Etapa 3 - avaliação do peso, consumo alimentar e comportamento dos animais; quantificação de marcadores sanguíneos de toxicidade renal (ureia e creatinina) e hepática (TGP, FA e proteínas totais); análises histológicas qualitativas do coração, fígado, rim, pulmão e pele; quantificação de colágeno na pele; analisar a probabilidade de desenvolvimento de radiodermite, em grupos independentes, após crescentes doses de radiação ionizante; quantificação de citocinas (IL-1?, IL-6, IL-10, KC e FNT-?) avaliação do grau de radiodermite. Resultados: Etapa 1 - as formulações permaneceram estáveis por três meses, sem alteração de características organolépticas e físico-químicas; aos seis meses a formulação mais concentrada ficou mais opaca e observou-se aumento do pH e da perda de curcumina e curcuminoides totais; Etapa 2 - os resultados mostraram que as nanopartículas lipídicas sólidas são mais citotóxicas para os queratinócitos do que para os fibroblastos nas doses avaliadas, apesar de serem menos citotóxicas que os curcuminoides não encapsulados; não se observou diferença na viabilidade destas células sem ou após radiação ionizante (2 Gy); as nanopartículas lipídicas sólidas contendo curcuminoides e os curcuminoides não encapsulados não estimularam a liberação de ?-hexosaminidase em mastócitos, sugerindo que a formulação com nanopartículas não possui propriedades alergênicas. Etapa 3 - a formulação tópica contendo nanopartículas lipídicas sólidas com 30 mg de curcuminoides não conferiu toxicidade local e nem aos órgãos-alvo; os animais não apresentaram perda ponderal, alterações comportamentais ou mudanças na ingestão alimentar ou hídrica; foi possível a indução de radiodermite a partir de 25 Gy, sendo 30 Gy a que apresentou maior probabilidade de desenvolvimento; os animais não apresentaram perda ponderal, redução do consumo alimentar e hídrico significativos; o painel de citocinas avaliado evidenciou que a pele responde ao tratamento de forma diferente do controle da radiação; não foi observado infiltrado inflamatório; a quantificação do colágeno mostrou grande variabilidade. Conclusões: Devido a uma toxicidade mínima do sistema nanocarreador desenvolvido, somos encorajados a realizar testes futuros para aplicações clínicas em dermocosmética e na prevenção e tratamento de lesões cutâneas ou osteoarticulares / Aims: Step 1 - to evaluate organoleptic and physicochemical characteristics of topical formulations containing solid lipid nanoparticles encapsulating curcuminoids; Step 2 - to evaluate the cytotoxicity of solid lipid nanoparticles and curcuminoids encapsulated in solid lipid nanoparticles or not in culture of fibroblast and keratinocytes cells without and after being submitted to IR; to evaluate the allergenic activity of encapsulated curcuminoids in solid or non-encapsulated lipid nanoparticles; Step 3 - to evaluate the acute toxicity of a formulation containing encapsulated curcuminoids in solid lipid nanoparticles on the skin and target organs of BALB mice after 21 days of topical application; to induce radiodermatitis in BALB mice; to evaluate the effect of topical formulations containing encapsulated curcuminoids in solid lipid nanoparticles in the prevention and treatment of radiodermatitis in BALB mice. Method: Step 1 - visual inspection, color, sensitivity to touch and odor, pH quantification, rheological behavior analysis and quantification of active (curcuminoids) of the formulations; Step 2 - evaluation of the cellular viability of keratinocytes, fibroblasts and mast cells, quantification of the release % of ?-hexosaminase enzyme in mast cells; Step 3 - evaluation of weight, food consumption and behavior of the animals, quantification of markers of renal toxicity (urea and creatinine) and hepatic (TGP, FA and total proteins), qualitative histological analysis of the skin, heart, liver, kidney and lung and quantitative analysis of collagen in the skin; analysis of the probability to developing radiodermatitis in independent groups after increasing doses of ionizing radiation; quantification of the cytokines (IL-1?, IL-6, IL-10, KC and TNF-?) and collagen, qualitative histological analyzis of the skin, and the degree of radiodermatitis. Results: Step 1 - the formulations remained stable for three months, without alteration of organoleptic and physicochemical characteristics; at six months the more concentrated formulation became more opaque and there was an increase in pH and loss of curcumin and total curcuminoids; Step 2 - the results showed that solid lipid nanoparticles are more cytotoxic for keratinocytes than for fibroblasts at the doses evaluated, although they were less cytotoxic than non-encapsulated curcuminoids; no significant difference was observed in the viability of these cells without or after ionizing radiation (2 Gy); the solid lipid nanoparticles containing curcuminoids and non-encapsulated curcuminoids did not estimulated ?-hexosaminidase release in mast cells, suggesting that the nanoparticle formulation does not have allergenic properties. Stage 3 - the topical formulation containing solid lipid nanoparticles with 30 mg curcuminoids did not confer local toxicity and nor to the target organs the animals did not showed any weight loss, behavioral changes or changes in food or water ingestion; the radiodermatitis induction was possible from 25 Gy, with the dose of 30 Gy being the most likely to develop; the animals had no significant weight loss, nor reduction in food and water ingestion, the cytokine panel evaluated showed that skin responds to treatment differently from radiation control, no inflammatory infiltrate was evident and the quantification of collagen showed great variability. Conclusions: Due to the minimal toxicity of the developed nanocarrier system, we are encouraged to perform future tests for clinical applications in dermocosmetic and in the prevention and treatment of cutaneous or osteoarticular lesions
738

Tensioactifs d’origine naturelle pour la solubilisation de principes actifs : synthèse, physico-chimie et toxicité / Natural-based surfactants for drug solubilization : synthesis, physico-chemical properties and toxicity

Ménard, Nathalie 02 December 2011 (has links)
L’objectif de ce travail de thèse est de développer de nouveaux agents tensioactifs, capables de s’auto-assembler sous forme de micelles permettant de solubiliser les principes actifs insolubles, en vue de leur administration par voie intraveineuse. Cette étude a permis la synthèse, la caractérisation physico-chimique ainsi que l’évaluation toxicologique in vitro et in vivo de nouveaux agents tensioactifs d’origine naturelle. Au cours de cette étude, différentes familles de tensioactifs ont été évaluées. Ces nouveaux agents tensioactifs sont composés d’une partie hydrophobe de type cholestérol, sels biliaires ou lipides, associée via une fonction amide à une partie hydrophile dérivée d’acides aminés tels que la lysine, la glutamine ou l’acide glutamique.Ces travaux expérimentaux ont permis d’étudier l’influence de la flexibilité de la partie hydrophobe sur la capacité de solubilisation des tensioactifs. Cette étude a montré que l’efficacité de solubilisation est reliée à la flexibilité de la partie hydrophobe. L’utilisation d’agents tensioactifs composés d’une chaîne lipidique saturée flexible a permis de solubiliser efficacement le principe actif insoluble avec un taux de charge de 46 % (m/m). Les tensioactifs composés de lipides saturés sont donc plus efficaces en termes de solubilisation que les dérivés de stéroïdes ou de lipides polyinsaturés, moins flexibles. Les études de toxicité ont mis en évidence la relation ente la structure chimique des tensioactifs et leur toxicité, en particulier vis-à-vis des membranes cellulaires. L’introduction de doubles liaisons en configuration cis dans la partie lipidique des tensioactifs permet de diminuer leur interaction avec les membranes cellulaires et donc leur toxicité mais diminue également leur capacité de solubilisation. Le développement de nouveaux agents tensioactifs nécessite donc de trouver un compromis entre la capacité de solubilisation et la toxicité des tensioactifs. / The aim of this thesis was to develop novel surfactants, able to self-assemble into micelles and to solubilize insoluble drugs intented for intravenous injection. Natural-based surfactants were synthesized and their physico-chemical properties were evaluated. In addition, their in vitro and in vivo toxicity were evaluated. Their drug solubilization abitity was also investigated. Three surfactant classes were evaluated. They were composed of a hydrophobic moiety, such as cholesterol, bile salts or lipids, bonded to a hydrophilic moiety, deriving from amino acids, such as lysine, glutamine or glutamic acid, via an amide bond.The influence of surfactant hydrophobic moiety flexibility on drug solubilization ability was evaluated. This study evidenced that solubilization efficiency is related to the surfactant hydrophobic moiety flexibility. The use of surfactants with flexible and saturated lipidic moieties increased drug water solubility with a drug loading of 46 % (w/w). Saturated lipid-based surfactants exhibited a better solubilization efficiency, in comparison with steroid-based surfactants or poly-unsaturated-based surfactants. Toxicity studies evidenced the relation between surfactant chemical structure and their toxicity, in particular with cell membranes. The introduction of double bond in cis configuration in surfactant lipidic moiety decreased their interaction with cell membranes and thus their toxicity. In addition, this chemical modification also decreased their solubilization ability. To develop novel surfactants, it is thus necessary to take into account drug solubilization ability and toxicity of surfactants.
739

Micro- et nanostructures biologiques tubulaires : Mécanismes physiques de l'auto-assemblage et du fonctionnement / Tubular biological micro- and nanostructures : Physical mechanisms of self-assembly and functioning

Golushko, Ivan 21 November 2018 (has links)
Les méthodes classiques de physique de l'état solide telles que la diffraction des rayons X et la microscopie électronique ont permis la compréhension de la structure des membranes cellulaires. Aujourd'hui, leur composition et structure étant bien connues, les recherches se concentrent sur les processus actifs des membranes. Des processus tels que l'endocytose impliquent des modifications substantielles de la forme des membranes lipidiques, réalisées par des protéines induisant la courbure membranaire. L'une des méthodes expérimentales parmi les plus populaires est dite « TLM-pulling », où la membrane lipidique tubulaire (TLM) est formée à partir de la vésicule en tirant par une force externe. Des structures similaires relient les vésicules endocytiques aux compartiments du donneur et servent de canaux pour le transfert de matière dans la cellule et entre les cellules adjacentes, établissant ainsi une voie de communication intercellulaire. De tels systèmes formés in vitro en raison de leur simplicité et grande homogénéité peuvent être décrits avec précision par la physique théorique.Dans la première partie de la thèse, nous développons un modèle théorique de TLM, basé sur la mécanique classique et la thermodynamique, et l'appliquons aux expériences de « TLM-pulling » avec adsorption de protéines induisant la courbure. Le modèle tient compte de l'asymétrie de la bicouche lipidique, de la tension superficielle, de la force longitudinale appliquée au TLM et de la différence de pression dans le système. Nous modélisons l'action que les protéines exercent sur la TLM via des ensembles de forces normales à la surface de la membrane à l'équilibre mécanique. Cette nouvelle approche multipolaire permet de modéliser les interactions anisotropes, entre les protéines adsorbées à la membrane, qui sont induites par sa déformation. Notre théorie décrit les premiers stades de la formation des échafaudages protéiques, c-à-d la disposition caractéristique des protéines et leur grande affinité avec les extrémités de la TLM. Le comportement collectif des protéines induisant la courbure est extrêmement important pour effectuer des déformations à grande échelle des membranes au cours de processus tels que l'endo et l'exocytose, l'entrée du virus dans la cellule hôte ainsi que la formation et la sortie des virions. L'étude de ce dernier processus pourrait conduire au développement de nouvelles méthodes de traitement en virologie.La deuxième partie de la thèse est consacrée à l'étude de l'aorte dorsale (DA) de l'embryon de poisson Danio-Rerio. On étudie l'évolution de la forme du DA pendant la transition endothélio-hématopoïétique (EHT). Le processus EHT conduit à l'extrusion des cellules souches/hématopoïétiques qui coloniseront en suite la moelle osseuse permettant l'hématopoïèse tout au long de la vie. Ce processus semble être universel et devrait s'appliquer aussi bien aux mammifères qu'aux oiseaux, ce qui fait de son étude un problème fondamental de l'embryologie.Le DA a une géométrie cylindrique et semblable aux TLM, mais en même temps, il est beaucoup plus gros que les tubes lipidiques, a un module de cisaillement non nul et est incorporé dans la matrice des tissus environnants : un système beaucoup plus complexe du point de vue mécanique. Nous relions les changements globaux de forme de l'aorte pendant l'EHT aux principes génériques de la mécanique et montrons que les instabilités mécaniques conduisant à l'évolution de la forme de l'aorte sont invoquées par des stress résultant des inhomogénéités de croissance et de l'interaction avec les tissus environnants. Sur la base de l'analyse théorique et des données en microscopie confocale 4D, nous proposons un schéma détaillé du processus et postulons que les instabilités mécaniques préparent l'ensemble du processus EHT avant son contrôle génétique spécifique, suggérant un mécanisme universel et auto-organisé du processus de réorganisation collective des tissus dans les organismes en croissance. / Applications of classical solid state physics methods such as X-ray diffraction analysis and electron microscopy allowed making a giant step in understanding of cellular membranes’ structure. Today since their composition and structure are well known, the focus of research has shifted to active processes involving cell membranes. As we know, such processes as endocytosis involve substantial shape changes of cell membranes, which are performed by curvature-inducing proteins. One of the most popular methods to study how these proteins interact with lipid membranes and each other is TLM-pulling experiment, where tubular lipid membrane (TLM) is formed from the vesicle by pulling. Similar structures connect endocytic vesicles with the donor compartments and serve as channels for the matter transfer within the cell and between adjacent cells establishing cell-to-cell communication pathway. Such systems formed in vitro due to their simplicity and high homogeneity can be accurately described by the means of theoretical physics.In the first part of the present thesis, we develop a theoretical model of the TLM pulled out of the vesicle on the basis of classical mechanics and thermodynamics and apply it to the TLM-pulling experiments with curvature-inducing proteins adsorption. The developed model takes into account asymmetry of the lipid bilayer, surface tension, longitudinal force applied to the TLM and pressure difference in the system. We model the action that proteins exert on TLM via sets of forces normal to the membrane’s surface and satisfying conditions of mechanical equilibrium. This novel force multipole approach allows us to model anisotropic interactions between proteins adsorbed at the membrane surface that are induced by the membrane deformation. Our theory describes early stages of protein scaffolds formation i.e. characteristic arrangement of proteins and their high affinity to the membrane ends. Collective behavior of curvature-inducing proteins is extremely important for performing large scale deformations of lipid membranes during such processes as endo and exocytosis, virus entry in the host cell as well as formation and exit of daughter virions later on. Studying of the latter process can possibly lead to the development of fundamentally new methods of viral disease treatment.The second part of the thesis is devoted to the study of zebrafish embryo’s dorsal aorta (DA). It focuses on DA’s shape evolution during the Endothelio-Haematopoietic Transition (EHT). The EHT process leads to the extrusion of haematopoietic stem/progenitor cells (HSPCs) which will later on colonize haematopoietic organs allowing haematopoiesis throughout adult life. This process seems to be universal and should also apply for both mammals and birds, which makes its investigation a fundamental problem of embryology.DA has a cylindrical geometry that makes it similar to the TLM’s, however at the same time DA is much bigger than lipid tubes, has a non-zero share modulus and is embedded in the matrix of surrounding tissues, which makes it a much more complex system from the mechanical perspective. We relate the global shape changes of the aorta during EHT to generic principles of mechanics and show that mechanical instabilities leading to the aorta shape evolution are invoked by different stresses resulting from the growth inhomogeneities and interaction with surrounding tissues. Based on the performed theoretical analysis and the data obtained with a help of 4D confocal microscopy we propose a detailed scheme of the process and postulate that mechanical instabilities prepare and support the whole EHT process prior to its specific genetic control. Our interpretation suggests a universal and self-organized mechanism underlying collective tissue reorganization processes in the growing organisms such as EHT.
740

Bicamadas catiônicas em sílica: adsorção e estabilidade coloidal a baixa força iônica / Cationic bilayers over silica: adsorption and colloidal stability at low ionic strength

Moura, Sérgio de Paula 08 August 2003 (has links)
O estudo da adsorção de membranas-modelo na superficie de partículas sólidas é uma importante linha de pesquisa em áreas científicas que estão em rápido desenvolvimento tais como o desenvolvimento de biosensores, a construção de kits imunológicos ou o design de materiais biocompatíveis. Neste trabalho foram analisadas sob o ponto de vista físico-químico, as interações entre partículas coloidais de sílica hidrofilica e lipossomos catiônicos de brometo de dioctadecildimetilamônio (DODAB). O desafio de romper a estrutura rígida fechada de lipossomos quando em contato com partículas de sílica foi contornado com o uso de dispersões de brometo dioctadecildimetilamônio (DODAB) compostas de fragmentos nanométricos abertos de bicamadas ao invés de vesículas. Em baixa força iônica e pH 6.5, a adsorção de DODAB a partir de fragmentos de bicamadas de DODAB (BF) sobre sílica hidrofilica foi quantificada por isotermas de adsorção a 0,0.1, 0.5 e 1.0mM de KCl ou TRIS-HCI. A adsorção de DODAB aumentou em função da concentração de sal. Como a literatura de titulações potenciométricas de sílica para determinação de carga superficial das partículas forneceu cargas superficiais em diversas condições experimentais de pH e força iônica (Tadros e Lyklema, 1968), foi possível estabelecer a relação entre adsorção de bicamadas catiônicas de DODAB e a densidade superficial de carga sobre a sílica. Houve um aumento monotônico de adsorção à medida que a densidade de carga da partícula aumentava. lsotermas de adsorção apresentaram formas típicas de adsorção competitiva com um máximo seguido de uma diminuição da adsorção em função da concentração de DODAB no sobrenadante. Esses perfis sugeriram que a atração hidrofóbica entre BF adsorvidos e livres poderia estar reduzindo a adsorção sobre a superficie da partícula. A adsorção de DODAB BF sobre a sílica aparentemente não conduziria a um recobrimento como bicamada contínua sobre a partícula, estando os BF adsorvidos ainda disponíveis para interação através de suas bordas hidrofóbicas com os fragII}entos livres em dispersão. Em pH 6.5, ao longo de uma faixa de concentração de DODAB (O- 1.0mM)e de KCl (0.1 - 10.0mM), a partir da medição dos tamanhos de partícula, análise dos potenciais-zeta, fotografias das misturas e cinéticas de sedimentação de partículas, pôde-se concluir que a estabilidade coloidal das partículas nas misturas foi governada pelo fator R, que é a relação de áreas superficiais totais para bicamadas Ab e partículas Ap, R= Ab/Ap. Em R - 0.5, o potencial-zeta médio (Ç) foi zero, o diâmetro médio de partícula (Dz) foi máximo, a sedimentação foi rápida e a estabilidade coloidal foi mínima; em R> 1, o çmedido foi positivo, Dz foi mínimo, a sedimentação não ocorreu e a estabilidade coloidal foi máxima. Em baixa força iônica, foi alcançada uma alta estabilidade coloidal de partículas na presença de fragmentos de bicamadas catiônicas para valores de R iguais ou maiores que 1. / The study of adsorption of model-membranes on the surface of solid partic1es is an important line of research in rapidly developing research areas such as biosensors design, building up of immunological kits or design ofbiocompatible materiais. In this work, interactions between hidrophilic silica particles and cationic liposomes made up of dioctadecyldimethylammonium bromide (DODAB) were evaluated from a physicochemical point of view. The challenge of breaking open rigid bilayer vesicles upon contact with silica particles was circumvented by using a dioctadecyldimethylammonium bromide (DODAB) dispersion consisting of open, nanosized bilayer fragments instead of vesicles. At low ionic strength and pH 6.5, DODAB adsorption from bilayer fragments on silica was quantified from adsorption isotherms at 0, 0.1, 0.5,1.0 and 10.0 mM KCI. Adsorption increased as a function of KCI concentration and surface charge density on particles. Isotherms shape was typical of competitive adsorption with a maximum possibly due to hydrophobic attraction between adsorbed and free bilayer fragments. Upon adsorption as fiat patches on particles, the fragments did not apparently seal into a continuous and closed bilayer surrounding the particle, instead interacted via hydrophobic edges with free fragments in dispersion. At pH 6.5, over a range of DODAB (0 - 1.0mM) and KCI concentrations (0.1 - 10.0 mM), from particle sizing, zeta-potential analysis, photographs of the mixtures and particle sedimentation kinetics, colloid stability of particles in the mixtures was govemed by the ratio R of total surface areas for bilayers Ab and partic1es Ap, R= Ab/Ap. At R ~ 0.5, mean zeta-potential ( &#950; ) was zero, mean particle diameter (Dz) was at maximum, sedimentation was rapid and colloid stability was at minimum; at R > 1, &#950; was positive, Dz was minimized, sedimentation was absent and colloid stability was high. At low ionic strength ([KCI] < 10 mM), high colloid stability for particles in presence of cationic bilayer fragments was achieved at or above R=I, i.e., from the equivalence of total surface areas for bilayer fragments and particles.

Page generated in 0.0674 seconds