• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 289
  • 87
  • 59
  • 33
  • 14
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 577
  • 577
  • 90
  • 87
  • 65
  • 63
  • 62
  • 58
  • 55
  • 53
  • 51
  • 43
  • 43
  • 42
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Liquid crystal-polymer composites and the stabilisation of defect phases

Kasch, Nicholas January 2015 (has links)
A simple method for increasing the stable temperature range of the liquid crystalline blue phase is demonstrated, by mixing a non-mesogenic polymer of low molecular weight into the blue phase material. In a mixture of cholesteryl benzoate and cholesteryl nonanoate the addition of polystyrene increased the stable blue phase range from 0.5K to 12K. This was measured strictly on heating from the chiral nematic phase through the blue phase in order to minimise non-equilibrium effects, and is one of the largest ranges so measured. The stability range can be closely tuned by changing the polymer concentration and molecular weight. The maximum range found by adding a particular compound seems only to depend on its saturation point in the liquid crystal, and the dependence of the range on concentration is non-linear. These features were explained by a numerical model of a blue phase unit cell incorporating the mean field Flory-Huggins and Maier-Saupe theories where the polymer could fill the high energy defect regions. Two of the oligomers which are shown to stabilise the blue phase are fluorescent, at 450nm and 500nm respectively, and it is proposed that tests on these mixtures could reveal photonic effects caused by the concentration of the fluorophores in the blue phase defect regions. The twist-grain boundary (TGB) phase is present in mixtures of cholesteryl oleyl carbonate and cholesteryl nonanoate over a range of up to 0.3K. The addition of polystyrene has no effect on the stability of the TGB phase. Conventional, in situ UV-initiated polymer stabilisation does not appear to stabilise the TGB phase, but is capable of stabilising over at least 30K the micron-size filaments which appear in the TGB phase when it is heated from the smectic phase in a cell with homeotropic alignment. Some notes are made on the causes and structure of this filament texture, and it is observed that the filaments tend to grow with a characteristic curvature. It is shown theoretically that the correct material could stabilise the TGB phase similarly to the polymers in the blue phase, by extending the previous model to include the Kobayashi-McMillan theory of smectic ordering. A second theoretical model of chirality around the transition to the smectic phase is then presented which takes account of fluctuations, based on an analogy with the state of a smectic-forming material infiltrated into an aerogel. A phase resembling the TGB phase emerges from this model. The model gives two first order transitions in accordance with experiments on the TGB phase, and reflects other experimental pitch and calorimetry measurements too. The electrochemical polymerisation of an acrylate monomer in the nematic and smectic-C* phases is investigated. 30-100V is applied across a cell containing the liquid crystal-monomer mixture, with no additional initiating compound. In both phases, the texture during polymerisation is frozen in by the polymer formed. In a nematic phase in a cell with initially planar alignment, the director in the field off state can be observed to tilt toward the homeotropic over a number of hours. In the ferroelectric case, as well as the textural freezing there is a somewhat reversible agglomeration of polymer strands into micron-scale structures. Scanning electron microscopy reveals a range of structures on both electrode surfaces, including in the nematic case corrugations with a periodicity of 500-750nm. There is no evidence of a polymer network spanning the thickness of the cell - rather the liquid crystal seems to be realigned by a polymer film at the electrode surfaces.
442

Lipid thermodynamics = new perspectives on phase studies for applications in engineering = Termodinâmica de lipídios: novas perspectivas em estudos de fases para aplicações em engenharia / Termodinâmica de lipídios : novas perspectivas em estudos de fases para aplicações em engenharia

Maximo, Guilherme José, 1982- 24 August 2018 (has links)
Orientadores: Antonio José de Almeida Meirelles, Mariana Conceição Costa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-24T10:06:55Z (GMT). No. of bitstreams: 1 Maximo_GuilhermeJose_D.pdf: 6364914 bytes, checksum: 716122d30b63141c35ee3d3c3305de17 (MD5) Previous issue date: 2014 / Resumo: Para o desenvolvimento de chocolates, manteigas, molhos para salada, cremes cosméticos, medicamentos ou biocombustíveis, assim como na otimização de processos de extração, refino, fracionamento, cristalização e produção de energia, os fenômenos de transição de fases dos sistemas lipídicos são temas, há muito tempo, de diversos trabalhos na literatura. O objetivo desses trabalhos tem sido avaliar como a composição dos produtos altera as suas propriedades físico-químicas e em especial aquelas relacionadas aos processos de fusão. De fato, alterações na temperatura exercem um grande impacto na estrutura cristalina da fase sólida dos sistemas graxos e, consequentemente, nas propriedades sensoriais e reológicas dos produtos. Essas alterações produzem comportamentos termodinâmicos tão variados que a determinação do equilíbrio de fases sólido-líquido desses sistemas representa um grande desafio. Não obstante, quanto maior a complexidade do sistema, menor é a compreensão do seu comportamento. Ou seja, apesar do grande número de trabalhos presentes na literatura envolvidos na investigação dos fenômenos de fusão de sistemas lipídicos, novos dados experimentais e abordagens teóricas para a modelagem dos diagramas são necessários para sua compreensão. Neste contexto, este trabalho teve dois objetivos principais. O primeiro relacionado à determinação e análise de diagramas de fases sólido-líquido de sistemas lipídicos binários de interesse para a indústria. O segundo foi desenvolver alternativas teóricas para aprimorar a representação dos diagramas de fases baseado em abordagens termodinâmicas clássicas. Portanto, onze sistemas binários compostos por triacilgliceróis, ácidos graxos e álcoois graxos foram avaliados. Esses sistemas são potenciais agentes de estruturação, formação de organogéis, produção e armazenamento de energia na indústria de alimentos, farmacêutica e de materiais. Os diagramas de equilíbrio sólido-líquido dessas misturas apresentaram comportamentos distintos, dependentes da formação de fases sólidas miscíveis ou imiscíveis e da não-idealidade do sistema. Além disso, foram estudados quatro sistemas formados a partir da reação ácido-base de Brønsted entre ácidos graxos e etanolaminas. Neste caso, a formação de líquidos iônicos próticos cristalinos com grande habilidade para auto-organização e comportamento não-Newtoniano singular podem atuar como auxiliares em diversas aplicações químicas e farmacêuticas. O problema imposto pela miscibilidade da fase sólida na construção dos diagramas de fases foi superado pela implementação de um algoritmo para a resolução de um sistema de equações não-lineares baseado nas equações fundamentais do equilíbrio sólido-líquido. O objetivo do algoritmo "Crystal-T" foi determinar a temperatura em que o primeiro e o último cristal se fundem durante o aquecimento do sistema. Para isso, a não-idealidade de ambas as fases líquida e sólida foi avaliada utilizando equações baseadas na energia de Gibbs em excesso, incluindo o método de contribuição de grupos UNIFAC, para o cálculo dos coeficientes de atividade. Considerando o aumento da produção mundial e do consumo de óleos e gorduras, este trabalho, a partir de demandas emergentes da indústria e da pesquisa científica, contribuiu na superação de alguns obstáculos relacionados à compreensão do equilíbrio de fases sólido-líquido de sistemas lipídicos para a engenharia de produtos e processos / Abstract: The phase transition phenomena of lipidic systems have long since been evaluated by several works in literature for developing chocolate, butters, dressings, spreads, cosmetic creams, medicines or biofuels as well as for optimizing processes such as extraction, refining, fractionation, crystallization or energy production. The aim of such works has been to answer how the products¿ composition can affect their physicochemical characteristics especially that related to the melting processes. In fact, changes in temperature highly impact the crystalline structure of fatty systems¿ solid phase and, consequently, in the sensorial and rheological properties of the products. These changes led to so many thermodynamic behaviors that the determination of the solid-liquid equilibrium of these systems can configure a particular challenge. However, the greater the complexity of the system the lower the understanding of its behavior. In other words, despite the number of works in literature involved in the investigation of the melting phenomena of lipidic systems, there is still a lack of experimental data and modeling approaches for their understanding. In this context, this work was conducted with two main goals. The first was focused on the measurement and comprehension of the solid-liquid equilibrium phase diagrams of lipidic binary systems of industrial interest. The second was aimed at the development of theoretical alternatives to improve the phase diagram description based on classical thermodynamic approaches. Thus, eleven binary systems composed by triacylglycerols, fatty alcohols and fatty acids were evaluated. Such mixtures are potential structuring, organogelating and energy storing agents for food, pharmaceutical and materials industry. The solid-liquid phase diagrams of these mixtures presented distinct behaviors depending on the formation of immiscible or miscible solid phases and the non-ideality of the system. Also, four systems built through a Brønsted acid-base reaction between fatty acids and ethanolamines were also evaluated. In this case, the formation of protic ionic liquid crystals with high self-assembling ability and marked non-Newtonian behavior are promising for pharmaceutical and chemical applications. The problem imposed by the partial miscibility of the solid phase in the construction of the phase diagrams was overtaken by the implementation of an algorithm based on the resolution of a non-linear equations system built by the solid-liquid equilibrium fundamental equations. The "Crystal-T" algorithm was aimed at the determination of the temperature at which the first and last crystal melts during the heating process. For this, the non-ideality of both liquid and solid phases was evaluated using excess Gibbs energy equations, including the group-contribution UNIFAC model, for the calculation of the activity coefficients. Taking into account the growing increase of the world production and consumption of fat and oils, this work, from industrial and academic emerging demands, contributed to overtake some barriers on the understanding of the solid-liquid phase equilibrium of lipidic mixtures for products and process engineering / Doutorado / Engenharia de Alimentos / Doutor em Engenharia de Alimentos
443

Geometria dos defeitos topológicos em materiais esméticos sobre superfícies curvas / Geometry of topological defects in smectic materials over curved surfaces

Souza, Iberê Oliveira Kuntz de, 1991- 03 April 2015 (has links)
Orientadores: Ricardo Antonio Mosna, Guillermo Gerardo Cabrera Oyarzun / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-26T12:57:50Z (GMT). No. of bitstreams: 1 Souza_IbereOliveiraKuntzde_M.pdf: 20917156 bytes, checksum: bb95eeb451fb153542f18a4c8e165528 (MD5) Previous issue date: 2015 / Resumo: Nesse trabalho estudamos configurações geométricas de um cristal líquido bidimensional sobre substratos curvos. Em particular, estamos interessados na fase esmética-A desses materiais, em que as suas moléculas são organizadas em camadas. Isso é interessante pois grande parte das propriedades de um cristal líquido, como as propriedades ópticas e elásticas, é afetada pela curvatura do seu substrato. Diferentemente dos esméticos no plano euclidiano, em superfícies curvas a presença de curvatura gaussiana dá origem a defeitos topológicos e grain boundaries na estrutura dos esméticos. Mostrarei essa interação entre curvatura e defeitos topológicos em algumas superfícies no limite em que a contribuição à energia devido a compressão das camadas é muito maior do que as contribuições provenientes de outros tipos de deformação. Nesse regime, o estado de menor energia é obtido quando as camadas esméticas são igualmente espaçadas. Isso faz com que o vetor diretor siga as geodésicas da superfície, o que leva a uma interessante analogia entre esméticos e óptica geométrica. Além disso, é bem conhecido na comunidade de óptica que lentes planas de índice de refração não-uniformes podem ser tratadas como superfícies curvas, cujas geodésicas se propagam da mesma forma que a luz se propaga na lente. Com isso, pode-se fabricar, em princípio, superfícies com propriedades ópticas específicas e, dessa forma, construir texturas esméticas com diferentes defeitos e singularidades a partir da extensa literatura conhecida de lentes / Abstract: We study geometrical configurations of liquid crystals defined on curved bidimensional substrates. We are particularly interested in the smectics-A phase, whose molecules are organized in layers. This is an interesting problem since many of the liquid crystal characteristics, such as its optical and elastic properties, are affected by the curvature of its substrate. Differently from the planar case, in curved surfaces the presence of Gaussian curvature induces topological defects and grain boundaries in the smectic structure. We will illustrate this interplay between curvature and topological defects for different surfaces in the limit where the energy contribution due to the compression of the layers is much larger than the contributions from other types of deformations. At this regime, the ground state is obtained when the smectic layers are uniformly spaced. In this case the normals to the layers follows geodesics of the surface. This leads to an interesting analogy between smectics and geometric optics. Moreover, it is well known in the optics community that flat lenses with nonuniform refractive index can be treated as curved surfaces, where their geodesics propagate in the same way that light propagates in the lens. Therefore, one can manufacture, in principle, surfaces with specific optical properties and construct smectic textures with different topological defects and singularities by using the extensive literature of known lenses / Mestrado / Física / Mestre em Física
444

Estudo de células de cristais líquidos termotrópicos calamíticos nemáticos e suas aplicações como sensores eletro-ópticos de tensões elétricas / not available

Marcos Rodrigues Costa 06 October 2000 (has links)
Esta pesquisa mostrou a viabilidade técnica da utilização de células de cristais líquidos nemáticos (CLNs) como elementos sensores eletro-ópticos de tensões elétricas eficazes (RMS). Duas foram as filosofias abordadas na concepção desses sensores: a modulação em amplitude da intensidade da luz polariza atuando em células transmissivas e a tensão de Freedericksz atuando em células reflexivas. Os sensores baseados na primeira filosofia foram denominados, nesta pesquisa, de sensores de escala de cinza (EC) e os segundos de sensores de gráfico de barras (GB). O sensor EC foi desenvolvido para aplicações em altas tensões. Este sensor é constituído por um divisor de tensão capacitivo, onde o braço de baixa tensão é composto por uma célula de cristal nemático torcida (CLNT). O sensor EC alia as vantagens dos tradicionais sistemas eletro-ópticos, tais como a imunidade às interferências eletromagnéticas (IEM); o alto isolamento elétrico proporcionado pela fibra óptica; com as vantagens de ser um sistema com um simples aparato óptico, então indutivo. O sensor GB mostrou-se mais versátil que o sensor EC. Neste sensor o braço de alta tensão do divisor de tensão capacitivo foi confeccionado na própria célula. Além disso, o sensor GB é menos sensível a influências térmicas, sendo neste caso mais indicado para aplicações de campo. Além das vantagens citadas acima, os sensores desenvolvidos apresentam as características de possuírem baixo custo, facilidade de instalação, versatilidade e empregarem tecnologia nacional. Também neste trabalho, foram estudados e determinados modelo físicos e elétricos que melhor representam o comportamento das células de CLNs. Os modelos físicos permitiram expandir o conhecimento sobre o comportamento de dispersão dielétrica presente nestes materiais devido ao movimento de impurezas iônicas; ao movimento molecular, e ao acúmulo de cargas espaciais nas interfaces entre as camadas de alinhamento e o cristal líquido, e também, auxiliaram na compreensão dos parâmetros físicos que influenciam no comportamento anisotrópico da permissividade dielétrica e da condutividade elétrica dos CLNs. Os modelos elétricos, além de auxiliarem na compreensão dos mecanismos físicos auxiliando com isso a proposição de modelos fenomenológicos, também mostraram-se uma poderosa ferramenta a ser aplicada na otimização de processos de fabricação e no desenvolvimento de dispositivos utilizados na confecção de mostradores de informação (LCDs). Estes modelos elétricos foram testados e utilizados em programas computacionais dedicados à simulação de circuitos elétricos, e puderam auxiliar sobremaneira no desenvolvimento do sensor GB. / In this research the technical viability of the usage of nematic liquid crystal (NLC) cells as sensor elements of effective electric voltage (RMS) is presented. Two approaches were adopted for the conception of these sensors: the modulation in width of the intensity of the polarized light acting in transmissive cells and the voltage of Freedericksz acting in reflexive cells. The sensors based on the first approach were termed grayscale sensors and the second were bargraph sensors. A grayscale sensor was developed for applications in high voltage. This sensor is constituted by a capacitor voltage divider, where the low voltage arm is composed of a cell of twisted nematic liquid crystal (TNLC). The grayscale sensor combines the advantages of traditional electro-optical systems, such as immunity to the electro-magnetic-interference (EMI) and the high electric insulation provided by the optical fiber; associated to characteristics of being a simple optical apparatus and a non-inductive system. The bargraph sensor has shown to be more versatile than the grayscale sensor. In this bargraph sensor the high voltage arm of the capacitor voltage divider was built in the CLNT cell itself, facilitating its use in both high and low voltages. Besides, the bargraph sensor is less sensitive to thermal influences, being in this case more suitable to field applications. In addition to the advantages mentioned above, both sensors developed showed characteristics of low cost, installation easiness, versatility and indigenous technology. Due to the need of establishing parameters for the development of the electric voltage sensor, also in this research, physical and electric models that best represent the behavior of NLC cells were obtained. The physical models allowed expanding the knowledge about the behavior of dielectric dispersion present in these materials due to the movement of ionic impurities, molecular movement, and the accumulation of space charge in the interfaces between the alignment layers and the liquid crystal. These models have also contributed to the understanding of the physical parameters that influence the anisotropic behavior of both dielectric permittivity and electric conductivity of NLCs. Besides, the electric models helped in the understanding of the physical mechanisms aiding in the proposition of phenomenological models. They have also proved to be a powerful tool to be applied in the optimization of production processes, as well as in the development of devices used in liquid crystal displays (LCDs). These electric models were tested and used in software for the simulation of electric circuits and could aid greatly in the development of bargraph sensors.
445

The Viscoelastic Response of Liquid Crystalline Fibers Formed By Bent-core Molecules / From Microscopic Ordering to Macroscopic Behavior

Kress, Oliver Herbert 23 November 2018 (has links)
No description available.
446

DNA-Based Materials: From Single Molecules to Liquid Crystals

Gyawali, Prabesh 03 March 2022 (has links)
No description available.
447

Ionic Electroactive Polymers and Liquid Crystal Elastomers for Applications in Soft Robotics, Energy Harvesting, Sensing and Organic Electrochemical Transistors

Rajapaksha, Chathuranga Prageeth Hemantha 25 April 2022 (has links)
No description available.
448

Wide Viewing Angle Liquid Crystal Displays

Hong, Qi 01 January 2006 (has links)
In this dissertation, novel phase compensation technologies are applied to the designs of wide viewing angle and high transmittance liquid crystal displays. First, a design of wide viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide viewing angles. Next, to increase the bright state transmittance while maintain the high contrast. Finally, to reduce the cost and improve the applicability of the broadband and wide-view circular polarizer, the device configuration of the broadband and wide-view circular polarizer is significantly simplified by the application of biaxial compensation films. The produced states of polarization remain close to the ideal circular polarization over a wide range of incident angles within the visual spectrum. With this circular polarizer, the presented wide-view liquid crystal display predicts high contrast ratio as well as high and uniform transmittance over wide viewing angles within the visual spectrum. ratio, wide viewing angle circular polarizers are developed. The produced states of polarization are very close to the ideal circular state of polarization over a wide range of incident angles within the visual spectrum. This guarantees not only high contrast ratio but also high and uniform transmittance.
449

High Birefringence And Low Viscosity Liquid Crystals

Wen, Chien-Hui 01 January 2006 (has links)
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ~0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2,3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive [Delta][epsilon] or non-polar LC compounds/mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. Dual-frequency liquid crystal exhibits a unique feature that its dielectric anisotropy changes from positive to negative when we increase the operating frequency. Submillisecond response time can be achieved by switching the frequency of a biased voltage, rather than switching the voltage at a given frequency. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (~ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. To measure the transient temperature change of the LC inside the cell, we have developed a non-contact method by utilizing the temperature-dependent birefringence property of the LC. Most importantly, we have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. With ~20 % of polymer mixed in the LC host, the LC forms polymer network which, in turn, exerts a strong anchoring force to the neighboring LC molecules. As a result, the operating voltage increases but the response time is significantly decreased. On the phase shift point of view, our homeotropic LC gel has ~0.08 [pi] phase shift, which is 2X larger than the previous nano-sized polymer-dispersed liquid crystal droplets. Moreover, it is free from light scattering and requires a lower operating voltage. In conclusion, this dissertation provides solutions to improve the performance of LC devices both in photonics and displays applications. These will have great impacts in defense and display systems such as optical phased array, LCD TVs, projectors, and LCD monitors.
450

Developing Surface Engineered Liquid Crystal Droplets For Sensing Applications

Bera, Tanmay 01 January 2012 (has links)
Diagnosis plays a very crucial role in medicine and health care, which makes biosensors extremely important in modern technological context. Till date, various types of biosensors have been developed that are capable of detecting a wide range of biologically important species with great sensitivity and selectivity. However, most of these sensing units require highly sophisticated instrumentation and often lack the desired portability. Liquid crystal (LC) droplets, on the other hand, are a new type of functional material that are finding increasing research attention as a new sensing unit due to their tunable optical property, high surface area, portability and cost-effectiveness. In this dissertation, functionalized LC droplets for biosensing at aqueous-LC interface are highlighted. Chemically functionalized LC droplets dispersed in aqueous solution were prepared by the self-assembly of amphiphilic molecules at the aqueous/LC interface. These functionalized LC droplets showed a well-defined director of configuration and a specific optical pattern when observed with a polarizing light microscope. It was discovered that the interaction of chemically functionalized LC droplets with an analyte triggers transition of the director of configuration of the LC within the droplets, providing a simple and unique optical sign for the detection of the analyte. Moreover, the director of configuration transition happened in a concentration dependent manner, allowing both qualitative and quantitative detection of the analyte. The sensitivity of chemically functionalized LC droplets depends not only on the nature of amphiphilic molecules but also the size and number of the droplets. iv The dissertation essentially deals with the application of these chemically functionalized LC droplets in detecting several biologically important species. It was observed that the adsorption of charged macromolecules (dendrimers, proteins, and viruses) on polyelectrolyte functionalized LC droplets triggered a bipolar-to-radial configuration transition based on the polar verses nonpolar interaction. By using a simple optical microscope, microgram per milliliter concentrations of bovine serum albumin, cowpea mosaic virus, and tobacco mosaic virus could be detected in aqueous solution. The detection limit of Mastoparan X polypeptide decorated LC droplets in detecting E. coli could reach to approximately 10 bacteria per milliliter. In this case, the high affinity of the polypeptide towards the bacterial causes the former to detach from the LC droplets, triggering the director of configuration transition of the LC inside the droplets. Finally, surfactant decorated LC droplets were used to detect lithocholic acid (LCA), a toxic bile acid used as a specific biomarker for colon cancers. In this case, the director of configuration transition of the LC inside the droplets is a result of the replacement of the surfactant from the aqueous/LC interface by LCA. The microgram per milliliter concentration of LCA, a clinically significant concentration, could be easily detected by changing the length of surfactants. These studies highlight the novel use of surface functionalized LC droplets to detect biologically important species. Due to their tunable optical property, coupled with high surface area and portability, surface functionalized LC droplets have great potentials in the design of next generation biosensors

Page generated in 0.1852 seconds