• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Film Growth Of Novel Frequency Agile Complex-oxide Piezoelectric Material

Sreeramakavacham, Bindu 01 January 2007 (has links)
Piezoelectric materials are well known for their applications in surface (SAW) and bulk acoustic wave (BAW) devices such as oscillators, resonators and sensors. Quartz has been the main material used in such applications. Ternary calcium gallium germanate (CGG) structure-type materials, so-called langasites, recently emerged as very promising because of their piezoelectric properties superior to quartz. This thesis discusses the growth of langasite-type La3Ga5.5Ta0.5O14 (LGT) films by liquid phase epitaxy (LPE) technique and their chemical and structural characterization. In addition, the different techniques suitable for the growth of LGT are discussed and compared. To adjust the materials properties for given applications, doping by selected ions can be used. However, the dopants must be homogeneously distributed. In the current study, Al, Ti, Cr and Ca were investigated as dopants. In an earlier study, Al and Ti had been chosen because of their ability to substitute the octahedral site of LGT, normally occupied by Ga (CN=VI) with a segregation coefficient near unity in Czochralski growth. Doping with Ca and Cr has never been reported before, and therefore, the segregation behavior was unknown. In this study, Al, Ti and co-doping with Cr and Ca has been investigated for both X and Y-oriented films. The dopant distribution in the films was quantitatively evaluated by Secondary Ion Mass Spectroscopy (SIMS), using ion-implanted LGT substrates as standards. The drop of dopant concentration, in the SIMS profile, allows for the identification of the film-substrate interface and to accurately measure the thickness of the films. The film thickness is found to be typically of the order 0.5 to 2µm, depending on growth conditions. The solvent was found a reliable choice, as solvent ions were not incorporated in the films above the detection limits of the characterization techniques. A lead oxide solvent system is used as a solvent for the growth of LGT LPE films with different orientations. Extensive structural characterization was performed. The crystallinity of substrates and films grown with different orientations was compared by X-ray diffraction (XRD). The films show a very high structural perfection, with typically FWHM values of 0.035 for the (004) reflection of the XRD rocking curve. The films were also characterized by TEM. The optical transmittance of the films was characterized by Varian optical spectrophotometer, and the value obtained of approximately 80% is comparable with the transmittance value of the Czochralski grown polished substrate.
2

Croissance de couches minces de silicium pour applications photovoltaïques par epitaxie en phase liquide par évaporation du solvant / Growth of si thin films by isothermal liquid phase epitaxy driven by solvent evaporation for pv applications

Giraud, Stephen 01 December 2014 (has links)
Une solution pour réduire la consommation de Si de haute pureté dans les cellules solaires à base de Si cristallin est de faire croître une couche active mince de haute qualité sur un substrat à faible coût. L'Epitaxie en Phase Liquide (EPL) est l'une des techniques les plus appropriées, car la croissance est réalisée dans des conditions proches de l'équilibre. On s'intéresse plus particulièrement au développement et l'optimisation d'une technique de croissance stationnaire et isotherme basée sur l'évaporation du solvant : l'Epitaxie en Phase Liquide par Evaporation d'un Solvant métallique (EPLES). Les principaux critères concernant le choix du solvant, de l'atmosphère de croissance et du creuset sont d'abord présentés et permettent de concevoir une première configuration d'étude. Un modèle analytique est ensuite développé pour comprendre les mécanismes mis en œuvre et étudier la cinétique d'évaporation du solvant et de croissance. Les différentes étapes du procédé de croissance dans le cas de l'EPLES de Si sont examinées et mettent en évidence un certain nombre de difficultés technologiques liées à cette technique : contrôle de la convection dans le bain, réactivité du bain Si-M avec le creuset, transport par différence de température et dépôt pendant la phase de refroidissement. Des solutions techniques sont proposées et mise en place pour contourner les difficultés rencontrées. Des couches épitaxiées de Si uniformes comprises entre 20 et 40 µm sont alors obtenues par EPLES avec des bains Sn-Si et In-Si sur substrat Si monocristallin entre 900 et 1200°C sous vide secondaire. Les vitesses de croissance expérimentales atteintes sont comprises entre 10 et 20 µm/h et sont conformes aux prédictions du modèle cinétique. La qualité structurale obtenue est comparable à celle des couches obtenues par EPL. Des couches de type P, avec un bain dopé In et In(Ga) sont obtenues avec une concentration en dopants proches de 1017 at.cm3 compatible avec une application PV. Enfin le potentiel de l'application de cette technique est évalué en basant la discussion sur la réalisation d'une couche de Si obtenue par EPLES sur substrat multicristallin avec un bain In-Si. / Crystalline Si thin films on low-cost substrates are expected to be alternatives to bulk Si materials for PV applications. Liquid Phase Epitaxy (LPE) is one of the most suitable techniques for the growth of high quality Si layers since LPE is performed under almost equilibrium conditions. We investigated a growth technology which allows growing Si epitaxial thin films in steady temperature conditions through the control of solvent evaporation from a metallic melt saturated with silicon: Liquid Phase Epitaxy by Solvent Evaporation (LPESE). We studied the main requirements regarding selection of solvent, crucible and growth ambient, and a first experimental set up is designed. An analytical model is described and discussed, aiming to predict solvent evaporation and Si crystallization rate. Growth experiments are implemented with a vertical dipping system. Growth procedure is presented and the influence, on Si growth, of melt convection, temperature gradient in the melt and Si-M reactivity with the material crucible are discussed. Solutions are proposed to improve and optimise the growth conditions. Experimentally, Si thin films were grown from Sn-Si and In-Si solution at temperatures between 900 and 1200°C under high vacuum. We are able to achieve epitaxial layers of several micrometers thickness (20-40µm). The predicted solvent evaporation rate and Si growth rate are in agreement with the experimental measurements. Regarding the structural quality, it is comparable to the crystal quality of layers grown by LPE. With In and In(Ga) melts, we can obtain P-type epitaxial layers with doping level in the range 1017 at.cm3, which is of great interest for the fabrication of solar cells. Finally, the growth of Si thin films on multicrystalline Si substrates by LPESE is discussed to assess the potential application of this technique.
3

Solution growth of polycrystalline silicon on glass using tin and indium as solvents

Bansen, Roman 14 July 2016 (has links)
Mit der vorliegenden Arbeit wird das Wachstum von polykristallinem Silicium auf Glas bei niedrigen Temperaturen aus metallischen Lösungen in einem Zweistufenprozess untersucht. Im ersten Prozessschritt werden nanokristalline Siliziumschichten (nc-Si) hergestellt, entweder durch die direkte Abscheidung auf geheizten Substraten oder durch als ''Amorphous-Liquid-Crystalline''(ALC)-Umwandlung bezeichnete metall-induzierte Kristallisation. Im zweiten Prozessschritt dienen die Saatschichten als Vorlage für das Wachstum von deutlich größeren Kristalliten durch stationäre Lösungszüchtung. Die ALC-Prozessdauer konnte durch umfassende Parameterstudien signifikant reduziert werden. Die Charakterisierung der durch direkte Abscheidung auf geheizten Substraten entstehenden nc-Si Saatschichten offenbarte, dass es sich dabei um individuelle Saatkörner handelt, die in eine quasi-amorphe Matrix eingebettet sind. Die Oxidation der Saatschichten vor dem zweiten Prozessschritt wurde als ein wesentliches Hindernis für das Wachstum identifiziert. Als erfolgreichste Lösung zur Überwindung dieses Problems hat sich ein anfänglicher Rücklöseschritt erwiesen. Da diese Methode jedoch schwierig zu kontrollieren ist, wurde ein UV-Laser-System entwickelt und installiert. Erste Resultate zeigen epitaktisches Wachstum an den Stellen, an denen das Oxid entfernt wurde. Bei der Lösungszüchtung auf ALC-Schichten beginnt das Wachstum an einigen größeren Saatkristallen, von wo aus umliegende Gebiete lateral überwachsen werden. Obwohl Kristallitgrößen bis zu 50 Mikrometern erreicht wurden, war es noch nicht möglich, geschlossene Schichten zu erzielen. Durch Lösungszüchtung auf nc-Si Saatschichten hingegen konnte dieses Ziel erreicht werden. Geschlossene, polykristalline Si-Schichten wurden erzeugt, auf denen alle Si-Kristallite miteinander verbunden sind. Neben den Wachstumsexperimenten wurden 3D-Simulationen durchgeführt, in denen u.a. unterschiedliche Heizerkonfigurationen simuliert wurden. / The subject of this thesis is the investigation of the growth of polycrystalline silicon on glass at low temperatures from metallic solutions in a two-step growth process. In the first process step, nanocrystalline Si (nc-Si) films are formed either by direct deposition on heated substrates, or by a metal-induced crystallization process, referred to as amorphous-liquid-crystalline (ALC) transition. In the second process step, these seed layers serve as templates for the growth of significantly larger Si crystallites by means of steady-state solution growth. Extensive parameter studies for the ALC process helped to bring down the process duration significantly. Characterization of the nc-Si seed layers, formed by direct deposition on heated substrates, showed that the layer is composed of individual seeds, embedded in a quasi-amorphous matrix. The oxidation of the seed layers prior to the second process step was found to be a major obstacle. The most successful solution has been an initial melt-back step. As the process is hard to control, though, a UV laser system has been developed and installed. First promising results show unobstructed epitaxial growth where the oxide has been removed. Steady-state solution growth on ALC seed layers was found to start from a few larger seed crystals, and then cover the surrounding areas by lateral overgrowth. Although crystallites with sizes of up to 50 micrometers were obtained, it was not yet possible to achieve full surface coverage with a continuous layer. By solution growth on nc-Si seed layers, however, it was eventually possible to achieve this goal. Continuous, polycrystalline Si layers were grown, on which all Si crystallites are interlocked. The growth experiments were accompanied by 3D simulations, in which e.g. different heater configurations have been simulated.

Page generated in 0.0663 seconds