Spelling suggestions: "subject:"lithiumion"" "subject:"lithiumion""
691 |
Solcellssystem i kombination med batterilager : En fallstudie av Uppsalas nya stadsbussdepå / PV system together with battery storage : A case study of Uppsala's new city bus depotWennberg, Emma January 2017 (has links)
In this thesis the potential benefits of combining a photovoltaic (PV) system with a battery storage are investigated. The thesis is conducted at the company WSP in Uppsala and the aim is to design a PV system for the new city bus depot that is planned to be built in Uppsala, estimate the PV system capacity and investigate whether a battery storage can increase the self-consumption of the system. The results of this study are that the most appropriate installation of the PV modules is to place them horizontally on the roof and by that one can achieve an installed power of 715 kWp and a total annual electricity production of 871 MWh. This corresponds to a self-sufficiency of 29 % and a self-consumption of 92 %, which indicate that overproduction of electricity sometimes occurs. How different battery storages, based on both lead-acid and lithium-ion batteries, affect the system is evaluated by developing a battery model in MATLAB. From the results of the battery model it is concluded that battery storages with a capacity of 0.3–0.8 kWh/kWp are most suitable to combine with the PV system and this applies to both lead-acid and lithium-ion batteries. The interval 0.3–0.8 kWh/kWp corresponds to battery capacities of 200–600 kWh and the self-consumption increases to 93–94 % for the lead-acid battery storages and to 93–95 % for the lithium-ion battery storages. The economic analysis show that it is generally more profitable to increase self-consumption of self-produced PV power than to sell it to the grid. However, the high costs that are associated with the battery storages eliminates the economic benefits of the increased self-consumption of PV power. Therefore, it is not considered possible to justify the installation of a battery storage at the bus depot.
|
692 |
Investigations On Electrodes And Electrolyte Layers For Thin Film BatteryNimisha, C S 05 1900 (has links) (PDF)
The magnificent development of on-board solutions for electronics has resulted in the race towards scaling down of autonomous micro-power sources. In order to maintain the reliability of miniaturized devices and to reduce the power dissipation in high density memories like CMOS RAM, localized power for such systems is highly desirable. Therefore these micro-power sources need to be integrated in to the electronic chip level, which paved the way for the research and development of rechargeable thin film batteries (TFB). A Thin film battery is defined as a solid-state electrochemical source fabricated on the same scale as and using the same type of processing techniques used in microelectronics.
Various aspects of deposition and characterization of LiCoO2/LiPON/Sn thin film battery are investigated in this thesis. Prior to the fabrication of thin film battery, individual thin film layers of cathode-LiCoO2, electrolyte-LiPON and anode-Sn were optimized separately for their best electrochemical performance. Studies performed on cathode layer include theoretical and experimental aspects of deposition of electrochemically active LiCoO2 thin films. Mathematical simulation and experimental validation of process kinetics involved in sputtering of a LiCoO2 compound target have been performed to analyze the effect of process kinetics on film stoichiometry. Studies on the conditioning of a new LiCoO2 sputtering target for various durations of pre-sputtering time were performed with the help of real time monitoring of glow discharge plasma by OES and also by analysing surface composition, and morphology of the deposited films. Films deposited from a conditioned target, under suitable deposition conditions were electrochemically tested for CV and charge/discharge, which showed an initial discharge capacity of 64 µAh/cm2/µm.
Studies done on the deposition and characterization of solid electrolyte layer-LiPON have shown that, sputtering from powder target can be useful for certain compounds like Li3PO4 in which breaking of ceramic target and loss of material are severe problems. An ionic conductivity of 1.1 x10-6 S/cm was obtained for an Nt/Nd ratio of 1.42 for a RF power density of 3 W/cm2 and N2 flow of 30 sccm. Also the reasons for reduction in ionic conductivity of LiPON thin films on exposure to air have been analyzed by means of change in surface morphology and surface chemistry. Ionic conductivity of 2.8 x10-6 S/cm for the freshly deposited film has dropped down to 9.9 x10-10 S/cm due to the reaction with moisture, oxygen and carbon content of exposed air.
Interest towards a Li-free thin film battery has prompted to choose Sn as the anode layer due to its relatively good electrochemical capacity compared with other metallic thin films and ease of processing. By controlling the rate of deposition of Sn, thin films of different surface morphology, roughness and crystallinity can be obtained with different electrochemical performance. The reasons for excessive volume changes during lithiation/delithiation of a porous Sn thin film have been analyzed with the aid of physicochemical characterization techniques. The results suggest that the films become progressively pulverized resulting in increased roughness with an increase in lithiation. Electrochemical impedance data suggest that the kinetics of charging becomes sluggish with an increase in the quantity of Li in Sn-Li alloy.
Thin film batteries with configuraion LiCoO2/LiPON/Sn were fabricated by sequential sputter deposition on to Pt/Si substartes. Pt/Cu strips were used as the current collector leads with a polymer packaging. Electrochemical charge/discharge studies revealed discharge capacities in the range 6-15 µAh/cm2/µm with hundreds of repeated cycles. TFB with a higher capacity of 35 µAh/cm2/µm suffered capacity fade out after 7 cycles, for which reasons were analyzed. The surface and cross-sectional micrographs of cycled TFB showed formation of bubble like features on anode layer reducing integrity of electrolyte-anode interface. The irreversible Li insertion along with apparent surface morphology changes are most likely the main reasons for the capacity fade of the LiCoO2/LiPON/Sn TFB.
|
693 |
The Future of Energy Storage : Investment Evaluations Regarding Energy Storage Systems Connected to PV Systems / Framtidens Energilagring : Investeringsberäkningar för energilagringssystem anslutna till PV-systemLindberg, Oskar, Högström, Emil, Falkenberg, Oskar January 2017 (has links)
An ever-decreasing cost of photovoltaics (PV) combined with generous installation subsidies lead to a growth of PV systems in Sweden. A large-scale penetration of PV power would make Energy Storage Systems (ESS) interesting for providing back-up storage, enabling flexibility and regulating intermittence. ESS represents a vital link between electrical supply and demand, and moreover a critical feature for increasing the use and attractiveness of renewable and intermittent energy sources. The purpose of this study is to do a quantitative analysis examining the most beneficial way to store electricity from PV regarding investment cost, life span, capacity and pay-off time. The study object is Valsätraskolan, a school in Uppsala with an existing PV system. The thesis shows that Lithium-ion batteries are the best prospected battery type but still not an economically profitable investment. With the current grid- and battery prices the most suitable battery solution has a pay-off time of 125 years. If the school would extend their PV system to cover all preferable roof areas, the pay-off time would be 48 years. If ESS are to become attractive from a financial point of view, the grid prices would have to increase and the cost for ESS decrease substantially.
|
694 |
Elektrochemická příprava grafen oxidu a jeho využití v elektrodových kompozitech s LiFePO4 / Electrochemical preparation of graphene oxide and its utilization in LiFePO4 compositesKrejčí, Pavel January 2018 (has links)
This work deals with issues of application of the graphene material in the field of electrochemical energy storage. It includes basic graphene properties, the overview of methods for the production of lithium-iron-phosphate/graphene composites and results of different research approaches. The general aim is to present growing opportunity of application of graphene based composites in the electrochemical energy storage field. In the experimental part of this work, a electrochemical exfoliation of graphite and a production of LFP/G composites with different amount of graphene material and with different types of graphene material are carried out. This work includes also x-ray diffraction spectroscopy measurements and the evaluation of impacts of graphene additives on final properties of the electrochemical energy storage.
|
695 |
Vliv retardéru hoření na záporné elektrody v lithno – iontovém akumulátoru / Influence of flame retardant on negative electrodes in lithium - ion accumulatorBuchta, Martin January 2020 (has links)
This diploma thesis deals with problematics of electrochemical power sources with focus on lithium accumulators, their construction and functioning priciple. It also discusses the safety of li-ion batteries with respect to their flammability. In addition, the flame retarders, which help to lower the flammability, are listed. The thesis describes Cyclic Voltammetry and Galvanostatic Cycling with Potencial which are lithium-ion cell measuring methods. In the last part, the influence of various flame retarders on negative electrode is compared based on the conducted tests.
|
696 |
Výzkum záporných elektrod pro lithno-iontové akumulátory / Development of negative electrodes for lithium-ions batteriesDrahokoupil, Petr January 2013 (has links)
This thesis deals with lithiation of negative electrode li-ion batteries. In this thesis is used several electrode materials: carbon, FeCl3, lithiated carbon electrodes and silicon carbide. Reduction of irreversible capacity lithium-ion batteries leads to increased capacity and also we can use new materials as a positive electrode. Thesis deals with the differences in the properties of materials using lithiation and their use in practice
|
697 |
Bezdrátový modul akcelerometru / Wireless accelerometer modulLysoň, Jakub January 2014 (has links)
This master’s thesis describes a wireless accelerometer module. The aim of this work was to study the properties and involvement of the accelerometer, wireless module design for data transfering from the accelerometer to the PC and the module implementation. As a wireless device is used bluetooth module that enables communication between the product and the computer. The wireless module used rechargable lithium ion battery that helps keep module alive without adapter or net cable.
|
698 |
Studium vlastností katodového materiálu pro Li-ion články v závislosti na struktuře aktivní vrstvy / Study of the properties of a cathode material for Li-ion cells depending on the structure of the active layerKršňák, Jiří January 2014 (has links)
This article deals with properties of cathode material of lithium-ion cells study in term of active layer dependence. Aim of the work is to get familiar with problematics of cathode material production and diagnostics and to compare different active layer production methods. The opening of the work is concentrating on rechargeable batteries, mainly lithium-ion batteries and their electrode materials. Practical part is describing method of cathode material production and its characteristics.
|
699 |
Vlastnosti aprotických elektrolytů pro lithno-iontové akumulátory / Properties of aprotic electrolytes for lithium-ion accumulatorsStaněk, Vladimír January 2014 (has links)
The present work deals with the properties of suitable electrolytes for lithium-ion batteries. The first part described in the current issue of electrolytes for lithium-ion batteries, types of solvents and their properties and methods of measurement properties. The second part is devoted to the measurement of the properties of solvents and electrolytes such as relative permittivity, density and viscosity. Measurement of relative permittivity was focused on the measurement of the solvent mixture with varying the percentage of the solvent. Viscosity and density were measured on a solvent with a lithium salt added (final electrolyte).
|
700 |
Aprotické elektrolyty s retardery hoření / Aprotic electrolytes with fire retardantHlava, Kamil January 2015 (has links)
This thesis deals with liquid aprotic electrolytes based on sulfolane with added flame retardant. The theoretical part of the thesis explains concepts - mainly aprotic electrolytes, flame retardants, and their practical use. It also discusses lithium - ion accumulators and materials used in them while focusing on the electrolyte function. The practical part of the thesis aims to measure the properties of aprotic electrolytes: their conductivity, potential window and flashpoint. It also contains a review of the measurement results.
|
Page generated in 0.0448 seconds