• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 773
  • 773
  • 400
  • 336
  • 201
  • 134
  • 134
  • 95
  • 92
  • 78
  • 75
  • 72
  • 70
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Evaluation of KPIs and Battery Usage of Li-ion BESS for FCR Application

Jansson, Samuel January 2019 (has links)
The main purpose of this thesis was to develop and evaluate Key Performance Indicators (KPIs) and battery usage associated with Lithium-ion Battery Energy Storage Systems (LiBESS) used as Frequency Containment Reserve (FCR). The investigation was based on three of Vattenfall´s LiBESS projects that use the same lithium-ion battery technology but vary in system rating and configuration. It was found that two of the most important KPIs are response time and energy efficiency. The response time describes how fast the system can respond to changes in grid frequency. Additionally, the energy efficiency describes how effectively the system can provide energy storage during service and it can be parametrized into the efficiency of the battery, converter and transformer. The results show that all the considered LiBESS can fulfill the response time requirements of 30 seconds for FCR provision. In the future stricter requirements for the response time in grid stabilization services will most likely be required. Nevertheless, the results showed that a well configured LiBESS can provide response times on the millisecond scale. The energy efficiency evaluation showed that the system energy efficiency decreased from 89% to 85% when the power increased from 50% to 100% of rated power. At 75% of rated power it was found that the converter had the lowest efficiency (92%) based on the analysis of the efficiency of all the system components. It was also found that the power consumed by auxiliary loads was nearly constant for the examined power rates and that it significantly reduced the energy efficiency. Lastly, the battery usage analysis showed that the battery often idles or operates at low power rates if the frequency dead-band of ±10 mHz is applied around the nominal value of 50 Hz. Moreover, the battery usage can be characterized by an average State of Charge of 50% and a maximum Depth of Discharge of 30% during both charge and discharge of the batteries.
672

從賽局理論的觀點探討台灣筆記型電腦鋰電池組廠商之競合策略 - 以鋰電池產業D公司為例

李志豪, Lee, Chih Hao Unknown Date (has links)
鋰離子電池(Li-Ion Battery)在筆記型電腦產品的應用性愈來愈高,而臺灣廠商在筆記型電腦產品之產業鏈上素來扮演重要地位,鋰離子電池產業也不例外。然而,環顧目前全球筆記型電腦鋰離子電池產業,日本與韓國廠商一方面供應筆記型電腦所使用的18650電池芯給台灣的電池組裝廠,另一方面在電池組上與台灣組裝廠競爭電池組的市場。而臺灣廠商在日本、韓國等電池芯供應商的夾擊下,該要如何找到出路? 本研究利用Brandenburger & Nalebuff(1996)在「競合策略」(Co-opetition)一書中發表的賽局理論為架構,利用賽局理論的架構探討臺灣電池組裝廠廠商在全球筆記型電腦鋰離子電池產業的定位。本研究採個案研究法深入訪談個案公司的高階主管,以瞭解其與供應商、競爭者的競合關係。由個案分析與研究發現得出研究結論如下: 結論一:明確的客戶選擇與產品策略,有助於凝聚內部的共識,創造對客戶和對供應商附加價值。 結論二:面對強勢的供應商,並且積極的爭取下游客戶的競爭下,企業要積極扮演好客戶期待的角色,並進一步藉由客戶的力量來提升供應商的服務。 結論三:企業透過不同的價值活動來展現技術和未來的發展力,可以提升在客戶端的價值地位;也可以讓供應商廠感受威脅來提升供貨的服務。 結論四:企業藉由客戶、互補者在其他產業的連結,有助於擴展產品的範圍及開發新的客戶。 / Lithium Ion Battery is getting more widely used at portable electronic products, particularly at laptop PC. In laptop PC industry, Taiwanese manufacturers have been playing important role in the worldwide supply chain, and Taiwanese battery pack makers also have significant share of computing batteries market for laptop PC in past years. Most of computing batteries adopt 18650 Lithium ion cell which is the most significant cost factor of a computing battery pack. Taiwanese battery pack makers source the Lithium ion cells mainly from Korean and Japanese Lithium ion cell suppliers. However, these cell suppliers are not only supply cells to pack makers, but also build the packs to compete against Taiwanese suppliers in pack market. Facing the competition from suppliers in end market, how can Taiwan pack makers survive in the battery pack business? This research uses "Co-opetition" of Game Theory by Adam M.Brandenburger and Barry J. Nalebuff as the framework , adopt case-study method to understand Taiwanese battery pack makers strategies to win the market share, how Taiwan battery pack makers position themselves among their suppliers, rivals and customers, what actions shall Taiwanese pack makers take to sustain in this industry. The conclusions of this research are stated as below 1. Clear and specific customer selection strategy and product plan would help the corporate to reach internal consensus, create value-add to customers and suppliers. 2. Corporate would obtain supports from suppliers through customers’ assistances when the supplier are also a competitor in product end market 3. Corporate would gain better service from suppliers by delivering its innovations and technologies through value activities. 4. Corporate would expand its product portfolio and develops new customers by utilizing the connections with customers and complementors.
673

Studies On Nanostructured Transition Metal Oxides For Lithium-ion Batteries And Supercapacitoris

Ragupathy, P 08 1900 (has links)
Rechargeable Li-ion batteries and supercapacitors are the most promising electrochemical energy storage devices in terms of energy density and power density, respectively. Recently, nanostructured materials have gained enormous interest in the field of energy technology as they have special properties compared to the bulk. Commercially available Li-ion batteries, which are the most advanced among the rechargeable batteries, utilize microcrystalline transition metal oxides as cathode materials which act as lithium insertion hosts. To explore better electrochemical performance the use of nanomaterials instead of conventional materials would be an excellent alternative. High Li-ion insertion at high discharge rates causes slow Li+ transport which in turn results in concentration polarization of lithium ions within the electrode material, causing a drop in cell voltage. This eventually, leads in termination of the discharge process before realizing the maximum capacity of the electrode material being used. This problem can be addressed by decreasing the average particle size which leads to an increase in surface area of the electrode material. Nanostructured materials, because of their high surface area and large surface to volume ratio, to some extent can overcome the problem of slow diffusion of ions. Supercapacitors are electrical energy storage devices which can deliver large energy in a short time. A supercapacitor can be used as an auxiliary energy device along with a primary source such as a battery or a fuel cell to achieve power enhancement in short pulse applications. Active materials for supercapacitors are classified into three categories: (i) carbonaceous materials, (ii) conducting polymers and (iii) metal oxides. Among the materials studied over the years, metal oxides have been considered as attractive electrode materials for supercapacitors due to the following merits: variable oxidation state, good chemical and electrochemical stability, ease of preparation and handling. The performance of supercapacitors can be enhanced by moving from bulk to nanostructured materials. The theme of the thesis is to explore novel routes to synthesize nanostructured materials for Li-ion batteries and supercapacitors, and to investigate their physical and electrochemical characteristics. Chapter I is an introduction of various types of electrochemical energy systems such as battery, fuel cell and supercapacitor. A brief review is made on electrode materials for Li-ion batteries and supercapacitors, and nanostructured materials. Chapter II deals with the study of nanostrip orthorhombic V2O5 synthesized by a two-step procedure, with the formation of a vanadyl ethylene glycolate precursor and post-calcination treatment. The precursor and the final product are characterized for phase and composition by powder X-ray diffraction (XRD), infrared (IR) spectroscopy, thermal analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The morphological changes are investigated using field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HRTEM). It is found that the individual strips have the following dimensions, length: 1.3 μm, width: 332 nm and thickness: 45 nm. The electrochemical lithium intercalation and de-intercalation of nanostrip V2O5 is investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycling, galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy. Chapter III describes the synthesis of nanoparticels of LiMn2O4 by microwave assisted hydrothermal method. The phase and purity of spinel LiMn2O4 are confirmed by powder XRD analysis. The morphological studies are carried out using FE-SEM and HRTEM. The electrochemical performance of spinel LiMn2O4 is studied by using CV and galvanostatic charge-discharge cycling. The initial discharge capacity is found to be about 89 mAh g-1 at a current density of 21 mA g-1 with reasonably good cyclability. Chapter IV deals with synthesis of MoO2 nanoparticles through ethylene glycol medium and its electrochemical characterization. XRD data confirms the formation MoO2 on monoclinic phase, space group P21/c. Polygon shape of MoO2 is observed in HRTEM. MoO2 facilitates reversible insertion-extraction of Li+ ions between 0.25 to 3.0 V vs. Li/Li+. CV and galvanostatic charge-discharge cycling are conducted on this anode material to complement the electrochemical data. Chapter V reports the synthesis of nanostructured MnO2 at ambient conditions by reduction of potassium permanganate with aniline. Physical characterization is carried out to identify the phase and morphology. The as prepared MnO2 is amorphous and it contains particles of 5 to 10 nm in diameter. On annealing at a temperature > 400 °C, the amorphous MnO2 attains crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods (length 500-750 nm and diameter 50-100 nm) is evident from SEM and TEM studies. High resolution TEM images suggest that nanoparticles and nanorods grow in different crystallographic planes. The electrochemical lithium intercalation and de-intercalation of nanorods was performed by (CV) and galvanostatic charge-discharge cycling. The initial discharge capacity of nanorod α-MnO2 is found to be about 197 mAh g-1 at a current density of 13.0 mA g-1. Capacitance behavior of amorphous MnO2 is studied by CV and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs. SCE in 0.1 M sodium sulphate solution. The effect of annealing on specific capacitance is also investigated. Specific capacitance of about 250 F g-1 is obtained for as prepared MnO2 at a current density of 0.5 mA cm-2 (0.8 A g-1). Chapter VI pertains to electrochemical supercapacitor studies on nanostructured MnO2 synthesized by polyol method. Although X-ray diffraction (XRD) pattern of the as synthesized nano-MnO2 shows poor crystallinity, it is found that it is locally arranged in δ-MnO2 type layered structure composed of edge-shared network of MnO6 octahedra by Mn K-edge X-ray Absorption Near Edge Structure (XANES) measurement. Annealed MnO2 shows high crystalline tunneled based α-MnO2 as confirmed by powder XRD pattern and XANES. As synthesized MnO2 exhibits good cyclability as an electrode material for supercapacitor. In Chapter VII, capacitance behavior of nanostrip V2O5, TiO2 coated V2O5 and nanocomposites of PEDOT/V2O5 are presented. Structural and morphological studies are carried out by powder XRD, IR, TGA, SEM and TEM. Cyclic voltammogram of pristine V2O5 shows the regular rectangular shape indicating the ideal capacitance behavior in aqueous 0.1 M K2SO4. The SC value of pristine V2O5 is found to be about 100 F g-1. Nanostrip V2O5 is modified with TiO2 using titanium isobutoxide to enhance the capacitance retention upon cycling. Only 48 % of the initial capacitance remains in the case of pristine V2O5 after 100 cycles, while TiO2 coated V2O5 exhibits better cyclability with capacitance of 70 % of the initial capacitance. The capacitance retention is attributed to the presence of TiO2 on the surface of V2O5 which prevents the vanadium dissolution into the electrolyte. Microwave assisted hydrothermally synthesized PEDOT/V2O5 nanocomposites are utilized as capacitor materials. The initial SC of PEDOT/V2O5 (237 F g-1) is higher than that of either pristine V2O5 or PEDOT. The enhanced electrochemical performance is attributed to synergic effect and an enhanced bi-dimensionality. Details of the above studies are described in the thesis with a conclusion at the end of each Chapter.
674

Diagnosis of the Lifetime Performance Degradation of Lithium-Ion Batteries : Focus on Power-Assist Hybrid Electric Vehicle and Low-Earth-Orbit Satellite Applications

Brown, Shelley January 2008 (has links)
Lithium-ion batteries are a possible choice for the energy storage system onboard hybrid electric vehicles and low-earth-orbit satellites, but lifetime performance remains an issue. The challenge is to diagnose the effects of ageing and then investigate the dependence of the magnitude of the deterioration on different accelerating factors (e.g. state-of-charge (SOC), depth-of-discharge (DOD) and temperature). Lifetime studies were undertaken incorporating different accelerating factors for two different applications: (1) coin cells with a LixNi0.8Co0.15Al0.05O2-based positive electrode were studied with a EUCAR power-assist HEV cycle, and (2) laminated commercial cells with a LixMn2O4-based positive electrode were studied with a low-earth-orbit (LEO) satellite cycle. Cells were disassembled and the electrochemical performance of harvested electrodes measured with two- and three-electrode cells. The LixNi0.8Co0.15Al0.05O2-based electrode impedance results were interpreted with a physically-based three-electrode model incorporating justifiable effects of ageing. The performance degradation of the cells with nickelate chemistry was independent of the cycling condition or target SOC, but strongly dependent on the temperature. The positive electrode was identified as the main source of impedance increase, with surface films having a composition that was independent of the target SOC, but with more of the same species present at higher temperatures. Furthermore, impedance results were shown to be highly dependent on both the electrode SOC during the measurement and the pressure applied to the electrode surface. An ageing hypothesis incorporating a resistive layer on the current collector and a local contact resistance (dependent on SOC) between the carbon and active material, both possibly leading to particle isolation, was found to be adequate in fitting the harvested aged electrode impedance data. The performance degradation of the cells with manganese chemistry was accelerated by both higher temperatures and larger DODs. The impedance increase was small, manifested in a SOC-dependent increase of the high-frequency semicircle and a noticeable increase of the high-frequency real axis intercept. The positive electrode had a larger decrease in capacity and increase in the magnitude of the high-frequency semi-circle (particularly at high intercalated lithium-ion concentrations) in comparison with the negative electrode. This SOC-dependent change was associated with cells cycled for either extended periods of time or at higher temperatures with a large DOD. An observed change of the cycling behaviour in the second potential plateau for the LixMn2O4-based electrode provided a possible kinetic-based explanation for the change of the high-frequency semi-circle. / Litiumjonbatteriet är en möjlig kandidat för energilagring i hybridfordon och i satelliter i låg omloppsbana, men än så länge är livslängden på batterierna ett problem. Utmaningen ligger i att kunna förstå hur batteriet åldras genom att utforska hur åldringsprocessen accelereras av faktorer som laddningstillstånd, urladdningsdjup och temperatur. Livslängdsstudier för två olika typer av batterier tänkta för olika applikationer utfördes: (1) knappceller med positiva LixNi0,8Co0,15Al0,05O2-baserade elektroder studerades med en effektstödd (power-assist) hybridcykel från EUCAR, och (2) laminerade kommersiella celler med positiva LixMn2O4-baserade elektroder studerades med en satellitcykel, avsedd för en satellit med låg omloppsbana. Cellerna öppnades och de uttagna elektrodernas elektrokemiska egenskaper utvärderades i två- och tre-elektroduppställningar. Resultaten från elektrokemiska impedansmätningar för den positiva LixNi0,8Co0,15Al0,05O2-baserade elektroden tolkades med hjälp av en fysikalisk tre-elektrod modell som tog hänsyn till de i litteraturen främst föreslagna effekterna av åldring. Prestandadegraderingen av celler med nickelkemi var oberoende av cykel och laddningstillståndet där åldringen skedde, men starkt beroende av temperaturen. Den positiva elektroden visade sig vara den största orsaken till impedansökningen i batteriet. Ytfilmerna på den positiva elektroden hade en sammansättning som var oberoende av laddningstillståndet men beroende av temperaturen. Impedansresultaten från de uttagna elektroderna var starkt beroende av både laddningstillstånd och yttre tryck på elektrodytan. Det visade sig att det var tillräckligt att ta hänsyn till ett resistivt skikt på strömtilledaren och en lokal kontaktresistans mellan kolet och det aktiva materialet (som är beroende av laddningstillståndet) för att anpassa modellen till impedansdata mätt på de uttagna elektroderna. Prestandadegraderingen av celler med mangankemi påskyndades av både högre temperaturer och högre urladdningsdjup. Impedansen ökade något, då både högfrekvenshalvcirkeln och högfrekvensintercepten ändrades. Positiva elektroden hade en större degradering i kapaciteten och en större ökning i magnituden av högfrekvenshalvcirkeln (speciellt vid högre litiumjon koncentrationer i elektroden) jämfört med den negativa elektroden. Denna laddningstillståndsberoende impedans-ökning var kopplad till celler som hade cyklats under en längre tid eller vid en högre temperatur och med ett högt urladdningsdjup. Ökningen i magnituden av högfrekvenshalvcirkeln skulle kunna vara relaterad till kinetiska begränsningar eftersom cyklingsbeteendet vid andra spänningsplatån ändrades samtidigt för de LixMn2O4-baserade elektroderna. / QC 20100621
675

Caractérisation de l'usage des batteries Lithium-ion dans les véhicules électriques et hybrides. Application à l'étude du vieillissement et de la fiabilité

Devie, Arnaud 13 November 2012 (has links) (PDF)
De nouvelles architectures de traction (hybride, électrique) entrent en concurrence avec les motorisations thermiques conventionnelles. Des batteries Lithium-ion équipent ces véhicules innovants. La durabilité de ces batteries constitue un enjeu majeur mais dépend de nombreux paramètres environ-nementaux externes. Les outils de prédiction de durée de vie actuellement utilisés sont souvent trop simplificateurs dans leur approche. L'objet de ces travaux consiste à caractériser les conditions d'usage de ces batteries (température, tension, courant, SOC et DOD) afin d'étudier avec précision la durée de vie que l'on peut en attendre en fonction de l'application visée. Différents types de véhicules électrifiés (vélos à assistance élec-trique, voitures électriques, voitures hybrides, et trolleybus) ont été instrumentés afin de documenter les conditions d'usage réel des batteries. De larges volumes de données ont été recueillis puis ana-lysés au moyen d'une méthode innovante qui s'appuie sur la classification d'impulsions de courant par l'algorithme des K-means et la génération de cycles synthétiques par modélisation par chaine de Markov. Les cycles synthétiques ainsi obtenus présentent des caractéristiques très proches de l'échantillon complet de données récoltées et permettent donc de représenter fidèlement l'usage réel. Utilisés lors de campagnes de vieillissement de batteries, ils sont susceptibles de permettre l'obtention d'une juste prédiction de la durée de vie des batteries pour l'application considérée. Plusieurs résultats expérimentaux sont présentés afin d'étayer la pertinence de cette approche.
676

Synthesis and Characterization of Nanostructured Electrodes for Solid State Ionic Devices

Zhang, Yuelan 20 November 2006 (has links)
The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. One of the key challenges in this effort is to develop and fabricate effective electrodes with desirable composition, microstructure and performance. This work focused on the design, fabrication, and characterization of nanostructured electrodes in an effort to minimize electrode polarization losses. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction exceed the diffusion-limited rate of Li+ transport within the bulk phase of an electrode, concentration polarization occurs. Further, large volume changes associated with Li+ insertion or extraction could induce stresses in bulk electrodes, potentially leading to mechanical failure. Interconnected porous materials with high surface-to-volume ratio were designed to suppress the stress and promote mass transport. In this work, electrodes with these unique architectures for lithium ion batteries have been fabricated to improve the cycleability, rate capability and capacity retention. Cathodic interfacial polarization represents the predominant voltage loss in a low-temperature SOFC. For the first time, regular, homogeneous and bimodal porous MIEC electrodes were successfully fabricated using breath figure templating, which is self-assembly of the water droplets in polymer solution. The homogeneous macropores promoted rapid mass transport by decreasing the tortuosity. And mesoporous microstructure provided more surface areas for gas adsorption and more TPBs for the electrochemical reactions. Moreover, composite electrodes were developed with a modified sol-gel process for honeycomb SOFCs. The sol gel derived cathodes with fine grain size and large specific surface area, showed much lower interfacial polarization resistances than those prepared by other existing processing methods. Nanopetals of cerium hydroxycarbonate have been synthesized via a controlled hydrothermal process in a mixed water-ethanol medium. The formation of the cerium compound depends strongly on the composition of the precursors, and is attributed to the favored ethanol oxidation by Ce(IV) ions over Ce(IV) hydrolysis process. Raman studies showed that microflower CeO2 preferentially stabilizes O2 as a peroxide species on its surface for CO oxidation.
677

Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications

Huang, Shan 01 November 2011 (has links)
Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high mobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, the atomistic and continuum modeling are performed to study the chemical-mechanical failures. The objective is to understand the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion-induced fracture in alloy electrodes for lithium-ion batteries. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures are discussed. Silicon is one of the most promising anode materials for Li-ion batteries (LIB) because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. To improve mechanical stability of LIB anode, failure mechanisms of silicon and coated tin-oxide nanowires have been studied at continuum level. It's shown that anisotropic diffusivity and anisotropic deformation play vital roles in lithiation process. Our predictions of fracture initiation and evolution are verified by in situ experiment observations. Due to the mechanical confinement of the coating layers, our study demonstrates that it is possible to simultaneously control the electrochemical reaction rate and the mechanical strain of the electrode materials through carbon or aluminum coating, which opens new avenues of designing better lithium ion batteries. This thesis addresses the nano-chemo-mechanical failure problems in two green energy-carrier systems toward improving the performance of Li-ion battery anode and hydrogen storage system. It provides an atomistic and continuum modeling framework for the study of chemo-mechanics of advanced materials such as nano-structured metals and alloys. The results help understand the chemical effects of impurities on the mechanical properties of host materials with different metallic and covalent bonding characteristics.
678

Relation entre la structure et le comportement electrochimique des phases LixNi1-yMyO2 (M = Al, Fe, Co). Materiaux d' electrodes positives pour batteries au lithium

Rougier, Aline 11 July 1995 (has links) (PDF)
Le nickelate de lithium "LiNiO2" est actuellement l'un des matériaux d'électrode positive pour batteries au lithium les plus etudies. Cependant, "LiNiO2" stoechiométrique n'existe pas, la formule réelle est Li1-zNi1+zO2. La présence de ces (z) ions nickel excédentaires entraine une diminution significative des performances électrochimiques. Une étude structurale fine (méthode de Rietveld), couplée à une étude magnétique, a permis de quantifier de façon précise l'écart a la stoechiométrie (z). L'influence de divers substituants sur les propriétés structurales, physiques et électrochimiques a également été étudiée.
679

Development of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles

Zhuge, Kun January 2013 (has links)
The popularity of the internal combustion engine (ICE) vehicles has contributed to global warming problem and degradation of air quality around the world. Furthermore, the vehicles??? massive demand on gas has played a role in the depletion of fossil fuel reserves and the considerable rise in the gas price over the past twenty years. Those existing challenges force the auto-industry to move towards the technology development of vehicle electrification. An electrified vehicle is driven by one or more electric motors. And the electricity comes from the onboard energy storage system (ESS). Currently, no single type of green energy source could meet all the requirements to drive a vehicle. A hybrid energy storage system (HESS), as a combination of battery and ultra-capacitor units, is expected to improve the overall performance of vehicles??? ESS. This thesis focuses on the design of HESS and the development of a HESS prototype for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Battery unit (BU), ultra-capacitor unit (UC) and a DC/DC converter interfacing BU and UC are the three main components of HESS. The research work first reviews literatures regarding characteristics of BU, UC and power electronic converters. HESS design is then conducted based on the considerations of power capability, energy efficiency, size and cost optimization. Besides theoretical analysis, a HESS prototype is developed to prove the principles of operation as well. The results from experiment are compared with those from simulation.
680

Structural and Electrochemical Studies of Positive Electrode Materials in the Li-Mn-Ni-O System for Lithium-ion Batteries

Rowe, Aaron William 28 May 2014 (has links)
Emerging energy storage applications are driving the demand for Li-ion battery positive electrode materials with higher energy densities and lower costs. The recent production of complete pseudo-ternary phase diagrams of the Li-Mn-Ni-O system generated using combinatorial methods has provided a greater understanding of the impact of initial composition, synthesis temperature, and cooling rate on the phases that form in the final materials. This thesis focuses on the synthesis and characterization of gram-scale positive electrode materials in the Li-Mn-Ni-O system. Structural analysis of these samples has resulted in the production of partial pseudo-ternary phase diagrams focusing on the positive electrode materials region of the Li-Mn-Ni-O system at 800°C and 900°C in air for both quenched and slow cooled compositions. These bulk-scale diagrams support the observations of the combinatorial diagrams, and show similar layered and cubic structures contained within several single- and multi-phase regions. The phases that form at each composition are shown to be dependent on both the reaction temperature and cooling rate used during synthesis. The electrochemical characterization of two composition series near Li2MnO3, one quenched and one slow cooled, is presented. The quenched compositions exhibited reversible cycling at 4.4 V, voltage plateaus and small increases in capacity above 4.6 V, and large first cycle irreversible capacity losses at 4.8 V. In the slow cooled series, all but one composition exhibited initial capacities below 100 mAh/g which began to continually increase with cycling, with several compositions exhibiting capacity increases of 300% over 150 cycles at 4.9 V. In both series, analysis of the voltage and differential capacity plots indicated that significant structure rearrangements are taking place in these materials during extended cycling, the possible origins of which are discussed. Finally, high precision coulometry studies of one Li-deficient and two Li-rich single-phase layered compositions are discussed. These materials exhibit minimal oxidation of simple carbonate-based electrolyte when cycled to high potential, with the Li-deficient composition producing less electrolyte oxidation at 4.6 V vs. Li/Li+ than commercial Li[Ni1/3Mn1/3Co1/3]O2 at 4.2 V. The inherent inertness of this composition may make it suitable for use as a thin protective layer in a core-shell particle.

Page generated in 0.1534 seconds