Spelling suggestions: "subject:"locally compact groups"" "subject:"focally compact groups""
1 |
Approximation properties of groups.January 2011 (has links)
Leung, Cheung Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 85-86). / Abstracts in English and Chinese. / Introduction --- p.6 / Chapter 1 --- Preliminaries --- p.7 / Chapter 1.1 --- Locally compact groups and unitary representations --- p.7 / Chapter 1.2 --- Positive definite functions --- p.10 / Chapter 1.3 --- Affine isometric actions of groups --- p.23 / Chapter 1.4 --- Ultraproducts --- p.29 / Chapter 2 --- Amenability --- p.33 / Chapter 2.1 --- Reiter's property --- p.33 / Chapter 2.2 --- Fφlner's property --- p.41 / Chapter 3 --- Kazhdan's Property (T) --- p.43 / Chapter 3.1 --- Definition and basic properties --- p.43 / Chapter 3.2 --- Property (FH) --- p.51 / Chapter 3.3 --- Spectral criterion for Property (T) --- p.56 / Chapter 3.4 --- Property (T) for SL3(Z) --- p.60 / Chapter 3.5 --- Expanders --- p.72 / Approximation Properties of Groups --- p.5 / Chapter 4 --- Haagerup Property --- p.74 / Chapter 4.1 --- Equivalent formulations of Haagerup Property --- p.74 / Chapter 4.2 --- Trees and wall structures --- p.82 / Bibliography --- p.85
|
2 |
Characterizations of absolutely continuous measures.Fleischer, George Thomas January 1971 (has links)
No description available.
|
3 |
Topological centers and topologically invariant means related to locally compact groupsChan, Pak-Keung Unknown Date
No description available.
|
4 |
Characterizations of absolutely continuous measures.Fleischer, George Thomas January 1971 (has links)
No description available.
|
5 |
Translation operators on group von Neumann algebras and Banach algebras related to locally compact groupsCheng, Yin-Hei Unknown Date
No description available.
|
6 |
Locally compact property A groupsHarsy Ramsay, Amanda R. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In 1970, Serge Novikov made a statement which is now called, "The Novikov Conjecture" and is considered to be one of the major open problems in topology. This statement was motivated by the endeavor to understand manifolds of arbitrary dimensions by relating the surgery map with the homology of the fundamental group of the manifold, which becomes diffi cult for manifolds of dimension greater than two. The Novikov Conjecture is interesting because it comes up in problems in many different
branches of mathematics like algebra, analysis, K-theory, differential geometry, operator algebras and representation theory. Yu later proved the Novikov Conjecture holds for all closed manifolds with discrete fundamental groups that are coarsely embeddable into a Hilbert space. The class of groups that are uniformly embeddable into Hilbert Spaces includes groups of Property A which were introduced by Yu. In fact, Property A is generally a property of metric spaces and is stable under quasi-isometry. In this thesis, a new version of Yu's Property A in the case of locally
compact groups is introduced. This new notion of Property A coincides with Yu's
Property A in the case of discrete groups, but is different in the case of general locally compact groups. In particular, Gromov's locally compact hyperbolic groups is of Property A.
|
7 |
Modules maps and Invariant subsets of Banach modules of locally compact groupsHamouda, Hawa 13 March 2013 (has links)
For a locally compact group G, the papers [13] and [7] have many results about
G-invariant subsets of G-modules, and the relationship between G-module maps,
L1(G)-module maps and M(G)-module maps. In both papers, the results were given
for one specific module action. In this thesis we extended many of their results to
arbitrary Banach G-modules. In addition, we give detailed proofs of most of the
results found in the first section of the paper [21].
|
8 |
Modules maps and Invariant subsets of Banach modules of locally compact groupsHamouda, Hawa 13 March 2013 (has links)
For a locally compact group G, the papers [13] and [7] have many results about
G-invariant subsets of G-modules, and the relationship between G-module maps,
L1(G)-module maps and M(G)-module maps. In both papers, the results were given
for one specific module action. In this thesis we extended many of their results to
arbitrary Banach G-modules. In addition, we give detailed proofs of most of the
results found in the first section of the paper [21].
|
9 |
Multipliers and approximation properties of groups / Multiplicateurs et propriétés d'approximation de groupesVergara Soto, Ignacio 03 October 2018 (has links)
Cette thèse porte sur des propriétés d'approximation généralisant la moyennabilité pour les groupes localement compacts. Ces propriétés sont définies à partir des multiplicateurs de certaines algèbres associés aux groupes. La première partie est consacrée à l'étude de la propriété p-AP, qui est une extension de la AP de Haagerup et Kraus au cadre des opérateurs sur les espaces Lp. Le résultat principal dit que les groupes de Lie simples de rang supérieur et de centre fini ne satisfont p-AP pour aucun p entre 1 et l'infini. La deuxième partie se concentre sur les multiplicateurs de Schur radiaux sur les graphes. L'étude de ces objets est motivée par les liens avec les actions de groupes discrets et la moyennabilité faible. Les trois résultats principaux donnent des conditions nécessaires et suffisantes pour qu'une fonction sur les nombres naturels définisse un multiplicateur radial sur des différentes classes de graphes généralisant les arbres. Plus précisément, les classes de graphes étudiées sont les produits d'arbres, les produits de graphes hyperboliques et les complexes cubiques CAT(0) de dimension finie. / This thesis focusses on some approximation properties which generalise amenability for locally compact groups. These properties are defined by means of multipliers of certain algebras associated to the groups. The first part is devoted to the study of the p-AP, which is an extension of the AP of Haagerup and Kraus to the context of operators on Lp spaces. The main result asserts that simple Lie groups of higher rank and finite centre do not satisfy p-AP for any p between 1 and infinity. The second part concentrates on radial Schur multipliers on graphs. The study of these objects is motivated by some connections with actions of discrete groups and weak amenability. The three main results give necessary and sufficient conditions for a function of the natural numbers to define a radial multiplier on different classes of graphs generalising trees. More precisely, the classes of graphs considered here are products of trees, products hyperbolic graphs and finite dimensional CAT(0) cube complexes.
|
10 |
Géométrie des groupes localement compacts. Arbres. Action ! / Geometry of locally compact groups. Trees. Action!Le Boudec, Adrien 13 March 2015 (has links)
Dans le Chapitre 1 nous étudions les groupes localement compacts lacunaires hyperboliques. Nous caractérisons les groupes ayant un cône asymptotique qui est un arbre réel et dont l'action naturelle est focale. Nous étudions également la structure des groupes lacunaires hyperboliques, et montrons que dans le cas unimodulaire les sous-groupes ne satisfont pas de loi. Nous appliquons au Chapitre 2 les résultats précédents pour résoudre le problème de l'existence de points de coupure dans un cône asymptotique dans le cas des groupes de Lie connexes. Dans le Chapitre 3 nous montrons que le groupe de Neretin est compactement présenté et donnons une borne supérieure sur sa fonction de Dehn. Nous étudions également les propriétés métriques du groupe de Neretin, et prouvons que certains sous-groupes remarquables sont quasi-isométriquement plongés. Nous étudions dans le Chapitre 4 une famille de groupes agissant sur un arbre, et dont l'action locale est prescrite par un groupe de permutations. Nous montrons entre autres que ces groupes ont la propriété (PW), et exhibons des groupes simples au sein de cette famille. Dans le Chapitre 5 nous introduisons l'éventail des relations d'un groupe de type fini, qui est l'ensemble des longueurs des relations non engendrées par des relations plus courtes. Nous établissons un lien entre la simple connexité d'un cône asymptotique et l'éventail des relations du groupe, et donnons une grande classe de groupes dont l'éventail des relations est aussi grand que possible. / In Chapter 1 we investigate the class of locally compact lacunary hyperbolic groups. We characterize locally compact groups having one asymptotic cone that is a real tree and whose natural isometric action is focal. We also study the structure of lacunary hyperbolic groups, and prove that in the unimodular case subgroups cannot satisfy a law. We apply the previous results in Chapter 2 to solve the problem of the existence of cut-points in asymptotic cones for connected Lie groups. In Chapter 3 we prove that Neretin's group is compactly presented and give an upper bound on its Dehn function. We also study metric properties of Neretin's group, and prove that some remarkable subgroups are quasi-isometrically embedded. In Chapter 4 we study a family of groups acting on a tree, and whose local action is prescribed by some permutation group. We prove among other things that these groups have property (PW), and exhibit some simple groups in this family. In Chapter 5 we introduce the relation range of a finitely generated group, which is the set of lengths of relations that are not generated by relations of smaller length. We establish a link between simple connectedness of asymptotic cones and the relation range of the group, and give a large class of groups having a relation range as large as possible.
|
Page generated in 0.0468 seconds