Spelling suggestions: "subject:"cocation routing problem"" "subject:"borocation routing problem""
11 |
Optimisation par essaims particulaires pour la logistique urbaine / Particle Swarm Optimization for urban logisticsPeng, Zhihao 18 July 2019 (has links)
Dans cette thèse, nous nous intéressons à la gestion des flux de marchandises en zone urbaine aussi appelée logistique du dernier kilomètre, et associée à divers enjeux d’actualité : économique, environnemental, et sociétal. Quatre principaux acteurs sont concernés par ces enjeux : chargeurs, clients, transporteurs et collectivités, ayant chacun des priorités différentes (amélioration de la qualité de service, minimisation de la distance parcourue, réduction des émissions de gaz à effet de serre, …). Face à ces défis dans la ville, un levier d’action possible consiste à optimiser les tournées effectuées pour la livraison et/ou la collecte des marchandises. Trois types de flux urbains sont considérés : en provenance ou à destination de la ville, et intra-urbains. Pour les flux sortants et entrants dans la ville, les marchandises sont d’abord regroupées dans un entrepôt situé en périphérie urbaine. S’il existe plusieurs entrepôts, le problème de planification associé est de type Location Routing Problem (LRP). Nous en étudions une de ses variantes appelée Capacitated Location Routing Problem (CLRP). Dans cette dernière, en respectant la contrainte de capacité imposée sur les véhicules et les dépôts, la localisation des dépôts et la planification des tournées sont considérées en même temps. L’objectif est de minimiser le coût total qui est constitué du coût d’ouverture des dépôts, du coût d’utilisation des véhicules, et du coût de la distance parcourue. Pour tous les flux, nous cherchons également à résoudre un problème de tournées de type Pickup and Delivery Problem (PDP), dans lequel une flotte de véhicules effectue simultanément des opérations de collecte et de livraison. Nous nous sommes focalisés sur deux de ses variantes : la variante sélective où toutes les demandes ne sont pas toujours satisfaites, dans un contexte de demandes appairées et de sites contraints par des horaires d’ouverture et fermeture (Selective Pickup and Delivery Problem with Time Windows and Paired Demands, ou SPDPTWPD). La seconde variante étudiée est l’extension de la première en ajoutant la possibilité d’effectuer les transports en plusieurs étapes par l’introduction d’opérations d’échanges des marchandises entre véhicules en des sites de transfert (Selective Pickup and Delivery with Transfers ou SPDPT). Les objectifs considérés pour ces deux variantes de PDP sont de maximiser le profit et de minimiser la distance. Chaque problème étudié fait l’objet d’une description formelle, d’une modélisation mathématique sous forme de programme linéaire, puis d’une résolution par des méthodes exactes, heuristiques et/ou métaheuristiques. En particulier nous avons développé des algorithmes basés sur une métaheuristique appelée Particle Swarm Optimization, que nous avons hybridée avec de la recherche locale. Les approches sont validées sur des instances de différentes tailles issues de la littérature et/ou que nous avons générées. Les résultats sont analysés de façon critique pour mettre en évidence les avantages et inconvénients de chaque méthode. / In this thesis, we are interested in the management of goods flows in urban areas, also called last mile logistics, and associated with various current issues: economic, environmental, and societal. Four main stakeholders are involved by these challenges: shippers, customers, carriers and local authorities, each with different priorities (improving service quality, minimizing the travelling distance, reducing greenhouse gas emissions, etc.). Faced with these challenges in the city, one possible action lever is to optimize the routes for the pickup and/or delivery of goods. Three types of urban flows are considered: from or to the city, and intra-urban. For outgoing and incoming flows into the city, the goods are first grouped in a warehouse located on the suburban area of the city. If there are several warehouses, the associated planning problem is the Location Routing Problem (LRP). We are studying one of its variants called the Capacitated Location Routing Problem (CLRP). In this problem, by respecting the capacity constraint on vehicles and depots, the location of depots and route planning are considered at the same time. The objective is to minimize the total cost, which consists of the cost of opening depots, the cost of using vehicles, and the cost of the travelling distance. For all flows, we are also looking to solve a Pickup and Delivery Problem (PDP), in which a fleet of vehicles simultaneously carries out pickup and delivery operations. We focus on two of its variants: the selective variant where not all requests are satisfied, in a context of paired demands and time windows on sites (Selective Pickup and Delivery Problem with Time Windows and Paired Demands, or SPDPTWPD). The second studied variant is the extension of the first one by adding the possibility of carrying out transport in several stages by introducing operations for the exchange of goods between vehicles at transfer sites (Selective Pickup and Delivery with Transfers or SPDPT). The considered objectives for these two variants of PDP are to maximize profit and to minimize distance. Each studied problem is formally described, mathematically modelled as a linear program and then solved by exact, heuristic and/or metaheuristic methods. In particular, we have developed algorithms based on a metaheuristic called Particle Swarm Optimization, which we have hybridized with local search operators. The approaches are validated on instances of different sizes from the literature and/or on instances that we have generated. The results are critically analyzed to highlight the advantages and drawbacks of each method.
|
12 |
Approche générique pour la prise de décisions multi-niveaux, contribution à la gestion des systèmes de production de soins en réseau / Generic approach of multi-level decisions making, contribution to the management of healthcare production system networkChen, Linjie 03 July 2015 (has links)
Le système de santé français est confronté au défi d’augmentation permanente de la demande en soins, sous une forte pression financière. Dans la stratégie nationale de santé, une des grandes orientations est de développer une base de coopération impliquant l’ensemble des acteurs et de leur engagement. Ces enjeux demandent au génie hospitalier de rechercher une efficience dans une échelle encore plus globale, ce qui demande d’intégrer les problèmes locaux et leurs outils d’optimisation qui présentent en général un haut degré de fragmentation, afin de contribuer à l’amélioration globale du système. Dans ce contexte-là, initialisé par un projet de conception du système de soins en réseau avec ressource de production mutualisée, nous proposons à travers ce mémoire de thèse une méthode générique pour résoudre le problème d’optimisation multi-niveaux dans lequel les décisions interdépendantes doivent être prises à différents niveaux dans une structure hiérarchique, ou aux étapes successives. Les décisions faites sont souvent corrélées, surtout pour une topologie de décisions enchaînées en hiérarchique que nous définissons sous le terme de « sous-structure optimale feedback ». La résolution de ce type de problème doit s’adapter pour prendre en compte autant que possible les implications liées aux décisions corrélées. La méthode proposée est basée sur la méta-heuristique PSO, elle utilise une procédure récursive pour définir le transfert des paramètres des sous-problèmes descendant et des évaluations ascendant à travers de multiples espaces de recherche, en assurant la cohérence de la convergence du problème global. Les applications et les analyses ont montrées que la méthode est assez générique et capable de produire la performance et la qualité de résolution proche de celles de la littérature / French healthcare system confronts the challenges of permanent increase in demand for healthcare, under heavy financial pressure. In the national healthcare strategy, a key focus is to develop a cooperation framework involving all organizations and units. These challenges require healthcare engineering to find efficiency in a more global scale, which means to integrate local optimization problems and decision tools that have generally a high degree of fragmentation in order to contribute to the overall improvement of the system. In this thesis, initiated by a shared unit-dose drug distribution system design project, a generic method was developed to solve the multi-level optimization problem in which interdependent decisions are made at different levels in a hierarchical structure, or at successive stages. The decisions made are often correlated, particularly for decisions in hierarchical topologies that we define by the term "optimal substructure with feedback". The resolution of this problem must be adapted to take into account all implications for correlated decisions. The proposed method is based on the meta-heuristic PSO, it uses a recursive procedure to define the top-down transfer of parameters and the bottom-up feedback of fitness through multiple search spaces, and ensures the consistency of global problem convergence. Our applications and analyzes have shown that this method is generic and is able to provide similar resolution performance and quality compared to the literature references
|
13 |
Developing Risk-Minimizing Vehicle Routing Problem for Transportation of Valuables: Models and AlgorithmsFallahtafti, Alireza 10 September 2021 (has links)
No description available.
|
14 |
Modeling and Analysis of a Feedstock Logistics ProblemJudd, Jason D. 02 May 2012 (has links)
Recently, there has been a surge in the research and application of "Green energy" in the United States. This has been driven by the following three objectives: (1) to reduce the nation's reliance on foreign oil, (2) to mitigate emission of greenhouse gas, and (3) to create an economic stimulus within the United States. Switchgrass is the biomass of choice for the Southeastern United States. In this dissertation, we address a feedstock logistics problem associated with the delivery of switchgrass for conversion into biofuel. In order to satisfy the continual demand of biomass at a bioenergy plant, production fields within a 48-km radius of its location are assumed to be attracted into production. The bioenergy plant is expected to receive as many as 50-400 loads of biomass per day. As a result, an industrialized transportation system must be introduced as early as possible in order to remove bottlenecks and reduce the total system cost. Additionally, we assume locating multiple bioenergy plants within a given region for the production of biofuel. We develop mixed integer programming formulations for the feedstock logistics problem that we address and for some related problems, and we solve them either through the use of decomposition-based methods or directly through the use of CPLEX 12.1.0.
The feedstock logistics problem that we address spans the entire system-from the growing of switchgrass to the transporting of bio-crude oil, a high energy density intermediate product, to a refinery for conversion into a final product. To facilitate understanding, we present the reader with a case study that includes a preliminary cost analysis of a real-life-based instance in order to provide the reader appropriate insights of the logistics system before applying optimization techniques for its solution. First, we consider the benefits of active versus passive ownership of the production fields. This is followed by a discussion on the selection of baler type, and then, a discussion of contracts between various business entities. The advantages of storing biomass at a satellite storage location (SSL) and interactions between the operations performed at the production field with those performed at the storage locations are then established. We also provide a detailed description of the operations performed at a SSL. Three potential equipment options are presented for transporting biomass from the SSLs to a utilization point, defined in this study as a Bio-crude Plant (BcP). The details of the entire logistics chain are presented in order to highlight the need for making decisions in view of the entire chain rather than basing them on its segments.
We model the feedstock logistics problem as a combination of a 2-level facility location-allocation problem and a multiple traveling salesmen problem (mATSP). The 2-level facility location-allocation problem pertains to the allocation of production fields to SSLs and SSLs to one of the multiple bioenergy plants. The mATSP arises because of the need for scheduling unloading operations at the SSLs. To this end, we provide a detailed study of 13 formulations of the mATSP and their reformulations as ATSPs. First, we assume that the SSLs are always full, regardless of when they are scheduled to be unloaded. We, then, relax this assumption by providing precedence constraints on the availability of the SSLs. This precedence is defined in two different ways and, is then, effectively modeled utilizing all the formulations for the mATSP and ATSP.
Given the location of a BcP for the conversion of biomass to bio-crude oil, we develop a feedstock logistics system that relies on the use of SSLs for temporary storage and loading of round bales. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile, and thereby, travel from one SSL to another. We use a mathematical programming-based approach to determine SSLs and equipment routes in order to minimize the total cost incurred. The mathematical program is applied to a real-life production region in South-central Virginia (Gretna, VA), and it clearly reveals the benefits of using SSLs as a part of the logistics system. Finally, we provide a sensitivity analysis on the input parameters that we used. This analysis highlights the key cost factors in the model, and it emphasizes areas where biggest gains can be achieved for further cost reduction.
For a more general scenario, where multiple BcPs have to be located, we use a nested Benders' decomposition-based method. First, we prove the validity of using this method. We, then, employ this method for the solution of a potential real-life instance. Moreover, we successfully solve problems that are more than an order of magnitude larger than those solved directly by CPLEX 12.1.0.
Finally, we develop a Benders' decomposition-based method for the solution of a problem that gives rise to a binary sub-problem. The difficulty arises because of the sub-problem being an integer program for which the dual solution is not readily available. Our approach consists of first solving the integer sub-problem, and then, generating the convex hull at the optimal integer point. We illustrate this approach for an instance for which such a convex hull is readily available, but otherwise, it is too expensive to generate for the entire problem. This special instance is the solution of the mATSP (using Benders' decomposition) for which each of the sub-problems is an ATSP. The convex hull for the ATSP is given by the Dantzig, Fulkerson, and Johnson constraints. These constraints at a given integer solution point are only polynomial in number. With the inclusion of these constraints, a linear programming solution and its corresponding dual solution can now be obtained at the optimal integer points. We have proven the validity of using this method. However, the success of our algorithm is limited because of a large number of integer problems that must be solved at every iteration. While the algorithm is theoretically promising, the advantages of the decomposition do not seem to outweigh the additional cost resulting from solving a larger number of decomposed problems. / Ph. D.
|
Page generated in 0.1252 seconds