Spelling suggestions: "subject:"cologique duu second order"" "subject:"cologique duu second cadre""
1 |
Sur les épreuves et les types dans la logique du second ordre / On proofs and types in second order logicPistone, Paolo 27 March 2015 (has links)
Dans cette thèse on s'intéresse aux formes de "circularité" qui apparaissent dans la théorie de la preuve de la logique du second ordre et de son contrepartie constructive, le Système F.Ces "circularités", ou "cercles vicieux" (Poincaré 1900), sont analysées sur la base d'une distinction entre deux points de vue distincts et irréductible (à cause des théorèmes d'incomplétude): le premier ("le pourquoi", Girard 1989) concerne la cohérence et l'Hauptsatz et demande des méthodes infinitaires (i.e. non élémentaires) de preuve. Le deuxième ("le comment", Girard 1989) concerne le contenu computationnel et combinatoire des preuves, donné par la correspondance entre preuves et programmes, et ne demande que de méthodes élémentaires de preuve.Dans la première partie de la thèse, dévouée au "pourquoi", les arguments philosophiques traditionnels sur les "cercles vicieux" sont confrontés avec la perspective qui émerge de la démonstration de l' Hauptsatz pour la logique de second ordre (obtenue par Girard avec la technique des candidats de réductibilité).Dans la deuxième partie de la thèse, dévouée au "comment", deux approches combinatoires aux cercles vicieux sont proposés: la première se basant sur la théorie du polymorphisme paramétrique, la deuxième sur l'analyse géométrique du typage qui vient de la théorie de l'unification. / In this dissertation several issues concerning the proof-theory of second order logic and its constructive counterpart (System F, Girard 1971) are addressed. The leitmotiv of the investigations here presented is the apparent "circularity'' or "impredicativity'' of second order proofs. This circularity is reflected in System F by the possibility to type functions applied to themselves, in contrast with Russell's idea that typing should rather forbid such ``vicious circles'' (Poincare 1906). A fundamental methodological distinction between two irreducible (because of incompleteness) approaches in proof theory constitutes the background of this work: on the one hand, "why-proof theory'' ("le pourquoi'', Girard 1989) addresses coherence and the Hauptsatz and requires non-elementary ("infinitary'') techniques; on the other hand, "how-proof theory'' ("le comment'', Girard 1989) addresses the combinatorial and computational content of proofs, given by the correspondence between proofs and programs, and is developed on the basis of elementary ("finitary'') techniques. }In the first part of the thesis, dedicated to "why-proof theory'', the traditional philosophical arguments on "vicious circles'' are confronted with the perspective arising from the proof of the Hauptsatz for second order logic (first obtained in Girard 1971 with the technique of reducibility candidates).In the second part of the thesis, dedicated to "how-proof theory'', two combinatorial approaches to "vicious circles'' are presented, with some technical results: the first one based on the theory of parametric polymorphism, the second one on the geometrical analysis of typing coming from unification theory.
|
2 |
Définissabilité et synthèse de transductions / Definability and synthesis of transductionsLhote, Nathan 12 October 2018 (has links)
Dans la première partie de ce manuscrit nous étudions les fonctions rationnelles, c'est-à-dire définies par des transducteurs unidirectionnels. Notre objectif est d'étendre aux transductions les nombreuses correspondances logique-algèbre qui ont été établies concernant les langages, notamment le célèbre théorème de Schützenberger-McNaughton-Papert. Dans le cadre des fonctions rationnelles sur les mots finis, nous obtenons une caractérisation à la Myhill-Nerode en termes de congruences d'indice fini. Cette caractérisation nous permet d'obtenir un résultat de transfert, à partir d'équivalences logique-algèbre pour les langages vers des équivalences pour les transductions. En particulier nous montrons comment décider si une fonction rationnelle est définissable en logique du premier ordre. Sur les mots infinis, nous pouvons également décider la définissabilité en logique du premier ordre, mais avec des résultats moins généraux.Dans la seconde partie nous introduisons une logique pour les transductions et nous résolvons le problème de synthèse régulière : étant donnée une formule de la logique, peut-on obtenir un transducteur bidirectionnel déterministe satisfaisant la formule ? Les fonctions réalisées par des transducteurs bidirectionnels déterministes sont caractérisés par plusieurs modèles différents, y compris par les transducteurs MSO, et ont ainsi été nommées transductions régulières. Plus précisément nous fournissons un algorithme qui produit toujours une fonction régulière satisfaisant une spécification donnée en entrée.Nous exposons également un lien intéressant entre les transductions et les mots avec données. Par conséquent nous obtenons une logique expressive pour les mots avec données, pour laquelle le problème de satisfiabilité est décidable. / In the first part of this manuscript we focus on the study of rational functions, functions defined by one-way transducers.Our goal is to extend to transductions the many logic-algebra correspondences that have been established for languages, such as the celebrated Schützenberger-McNaughton-Papert Theorem. In the case of rational functions over finite words, we obtain a Myhill-Nerode-like characterization in terms of congruences of finite index. This characterization allows us to obtain a transfer result from logic-algebra equivalences for languages to logic-algebra equivalences for transductions. In particular, we show that one can decide if a rational function can be defined in first-order logic.Over infinite words, we obtain weaker results but are still able to decide first-order definability.In the second part we introduce a logic for transductions and solve the regular synthesis problem: given a formula in the logic, can we obtain a two-way deterministic transducer satisfying the formula?More precisely, we give an algorithm that always produces a regular function satisfying a given specification.We also exhibit an interesting link between transductions and words with ordered data. Thus we obtain as a side result an expressive logic for data words with decidable satisfiability.
|
3 |
Programmation en lambda-calcul pur et typéNour, Karim 14 January 2000 (has links) (PDF)
Mes travaux de recherche portent sur la théorie de la démonstration, le lambda-calcul et l'informatique théorique, dans la ligne de la correspondance de Curry-Howard entre les preuves et les programmes.<br /><br />Dans ma thèse de doctorat, j'ai étudié les opérateurs de mise en mémoire pour les types de données. Ces notions, qui sont introduites par Krivine, permettent de programmer en appel par valeur tout en utilisant la stratégie de la réduction de tête pour exécuter les $\lambda$-termes. Pour cette étude, j'ai introduit avec David une extension du $\lambda$-calcul avec substitutions explicites appelée $\lambda$-calcul dirigé. Nous en avons déduit une nouvelle caractérisation des termes de mise en mémoire et obtenu des nombreux résultats très fins à leur sujet. En ce qui concerne le typage des opérateurs de mise en mémoire, Krivine a trouvé une formule du second ordre, utilisant la non-non traduction de Gödel de la logique classique dans la logique intuitionniste, qui caractérise ces opérateurs. Je me suis attaché à diverses généralisations du résultat de Krivine pour les types à quantificateur positif dans des extensions de la logique des prédicats du second ordre.<br /><br />J'ai poursuivi, après ma thèse, une activité de recherche sur l'extension de la correspondance de Curry-Howard à la logique classique, au moyen des instructions de contrôle. J'ai étudié des problèmes liés aux types de données dans deux de ces systèmes : le $\lambda \mu$-calcul de Parigot et le $\lambda C$-calcul de Krivine. J'ai donné des algorithmes très simples permettant de calculer la valeur d'un entier classique dans ces deux systèmes. J'ai également caractérisé les termes dont le type est l'une des règles de l'absurde. J'ai étendu le système de Parigot pour en obtenir une version non déterministe mais où les entiers se réduisent toujours en entiers de Church. Curieusement, ce système permet de programmer la fonction ``ou parallèle''.<br /><br />Je me suis intéressé aux systèmes numériques qui servent à représenter les entiers naturels au sein du $\lambda$-calcul. J'ai montré que pour un tel système, la possession d'un successeur, d'un prédécesseur et d'un test à zéro sont des propriétés indépendantes, puis qu'un système ayant ces trois fonctions possède toujours un opérateur de mise en mémoire. Dans un cadre typé, j'ai apporté une réponse négative à une conjecture de Tronci qui énonçait une réciproque du résultat précédent.<br /><br />La notion de mise en mémoire ne s'applique qu'à des types de données. Une définition syntaxique a été donné par Böhm et Berarducci, et Krivine a proposé une définition sémantique de ces types. J'ai obtenu avec Farkh des résultats reliant la syntaxe et la sémantique des types de données. Nous avons proposé également des définitions des types entrée et des types sortie pour lesquelles nous avons montré diverses propriétés syntaxiques et sémantiques.<br /><br />J'ai réussi à combiner la logique intuitionniste et la logique classique en une logique mixte. Dans cette logique, on distingue deux genres de variables du second ordre, suivant que l'on peut, ou non, leur appliquer le raisonnement par l'absurde. Ce cadre m'a permi de donner le type le plus général pour les opérateurs de mise en mémoire. Vu le rôle important que cette logique semble devoir jouer dans la théorie de ces opérateurs, j'en ai mené avec A. Nour une étude théorique approfondie. Le système de logique mixte propositionnelle auquelle nous avons abouti évoque les sytèmes $LC$ de Girard et $LK^{tq}$ de Danos, Joinet et Schellinx.<br /><br />Je me suis intéressé avec David à l'équivalence induite par l'égalité entre les arbres de Böhm infiniment $\eta$-expansés. Avec Raffalli, je me suis également intéressé à la sémantique de la logique du second ordre.
|
Page generated in 0.0956 seconds