• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariable (φ,Γ)-modules and representations of products of Galois groups

Pupazan, Gheorghe 22 October 2021 (has links)
Für eine Primzahl p, sei L eine endliche Erweiterung von $QQ_p$ mit Ganzheitsring $O_L$ und Restklassenk\"{o}rper $kk_L$. Sei ferner n eine positive ganze Zahl. In dieser Arbeit beschreiben wir die Kategorie der endlich erzeugten stetigen Darstellungen der n-ten direkten Potenz der absoluten Galoisgruppe $G_L$ von L mit Koeffizienten in $O_L$, unter Verwendung einer verallgemeinerten Version der $(phi, Gamma)$-Moduln von Fontaine. In Kapitel 4 beweisen wir, dass die Kategorie der stetigen Darstellungen der n-ten direkten Potenz von $G_L$ auf endlichen dimensionalen $kk_L$-Vektorräumen und die Kategorie étaler $(phi, Gamma)$-Moduln über einem n-variablen Laurentreihenring über $kk_L$ äquivalent sind. In Kapitel 5 erweitern wir diese Äquivalenz, um zu beweisen, dass die Kategorie der stetigen Darstellungen der n-ten direkten Potenz von $G_L$ auf endlich erzeugten $O_L$-Moduln und die Kategorie étaler $(phi, Gamma)$-Moduln über einem n-variablen Laurentreihenring über $O_L$ äquivalent sind. Einerseits erhalten wir, wenn wir n=1 und L willkürlich lassen, die Verfeinerung von Fontaine ursprünglicher Konstruktion gemäß Kisin, Rin und Schneider, die Lubin-Tate Theorie verwenden. Wenn wir andererseits n willkürlich lassen und $L=QQ_p$, erhalten wir die Theorie von Zábrádi von multivariablen zyklotomischen $(phi, Gamma)$-Moduln, die Fontaines Verwendung einer einzelnen freien Variablen verallgemeinert. Daher bietet unsere Arbeit einen gemeinsamen Rahmen für diese beiden Verallgemeinerungen. / For a prime number p, let L be a finite extension of $QQ_p$ with ring of integers $O_L$ and residue field $kk_L$. We also let n be a positive integer. In this thesis we describe the category of finitely generated continuous representations of the n-th direct power of the absolute Galois group $G_L$ of L with coefficients in $O_L$ using a generalized version of Fontaine's $(phi, Gamma)$-modules. In Chapter 4 we prove that the category of continuous representations of the n-th direct power of $G_L$ on finite dimensional $kk_L$-vector spaces is equivalent to the category of étale $(phi, Gamma)$-modules over a n-variable Laurent series ring over $kk_L$. In Chapter 5 we extend this equivalence to prove that the category of continuous representations of the n-th direct power of $G_L$ on finitely generated $O_L$-modules is equivalent to the category of étale $(phi, Gamma)$-modules over a n-variable Laurent series ring over $O_L$. On the one hand, if we let n=1 and $L$ be arbitrary, we obtain the refinement of Fontaine's original construction due to Kisin, Rin and Schneider, which uses Lubin-Tate theory. On the other hand, if we let n be arbitrary and $L=QQ_p$, we recover Zábrádi's theory of multivariable cyclotomic $(phi,Gamma)$-modules that generalizes Fontaine's use of a single free variable. Therefore, our thesis provides a common framework for both of these generalizations.
2

Mikroprimstellen für p-adische Zahlkörper

Wirl, Ernst Ludwig 14 February 2011 (has links)
Mikroprimstellen wurden eingeführt von J. Neukirch im Rahmen der abstrakten Klassenkörpertheorie. Eine Verallgemeinerung der Zerlegungsgruppen von Primstellen globaler Körper motivierte die rein gruppentheoretische Definition der Mikroprimstellen als gewisse Äquivalenzklassen von Frobeniuselementen. Auf den Fall der Galoisgruppen lokaler oder globaler Körper angewendet, ergibt diese Theorie eine Beschreibung spezieller Konjugationsklassen. Die Hauptaufgabe von J. Neukirch ist, die zahlentheoretische Bedeutung der Mikroprimstellen zu verstehen, das heißt, sie in Termen des Grundkörpers anzugeben. J. Mehlig und E.-W. Zink fanden eine Bijektion zwischen Mikroprimstellen und normverträglichen Folgen von Primelementen in Körpertürmen. Diese Türme entstehen durch die Fixkörper der abgeleiteten Untergruppen der Trägheitsgruppe. Auf diese Weise betrachtet man Mikroprimstellen für die entsprechenden Faktorgruppen der absoluten Galoisgruppe, um dann einen projektive Limes zu bilden. Im ersten Schritt ist eine Bijektion zwischen relativen Mikroprimstellen und Konjugationsklassen von Primelementen gezeigt worden. Das Hauptergebnis dieser Arbeit ist eine vollständige Antwort auf die Frage von J. Neukirch im zweiten Schritt. Es wird eine Normabbildung für Lubin-Tate-Potenzreihen verschiedener Höhe angegeben und der projektive Limes bezüglich dieser Normabbildungen gebildet. Dazu werden Ergebnisse der Klassenkörpertheorie auf einen ''''fastabelschen'''' Fall übertragen. Schließlich können die Mikroprimstellen als Galoisorbits von normverträglichen Abfolgen normischer Lubin-Tate-Potenzreihen beschrieben werden. Die Koeffizienten aller dieser Lubin-Tate-Potenzreihen sind in einer endlichen unverzweigten Erweiterung des Grundkörpers. Also kann man zu einer gegebenen normverträglichen Abfolge normischer Lubin-Tate-Potenzreihen den Koeffizientenkörper definieren. Der Grad dieses Körpers bzw. die Länge des Galoisorbits entspricht dem Grad der zugehörigen Mikroprimstelle. / Micro primes were introduced by J. Neukirch in the context of abstract class field theory. A generalization of decomposition groups of primes of global fields led him to a purely group theoretical definition of micro primes as certain equivalence classes of Frobenius elements. Applied to the case of Galois groups of local or global fields this theory yields a description of special conjugacy classes. The main problem already posed by J. Neukirch is to understand the number theoretical meaning of micro primes, that is to describe them in terms of the base field. J. Mehlig and E.-W. Zink established a bijection between micro primes and norm compatible sequences of prime elements in field towers. These towers arise as fixed point fields for the sequence of derived subgroups of the inertia group. So one has to study micro primes for the corresponding factor groups of the absolute Galois group and then to form a projective limit. In the first step, a bijection between relative micro primes and conjugacy classes of prime elements has been obtained. The main result of this project is a complete answer to the problem of J. Neukirch for the second step. One has to introduce norm maps between Lubin-Tate power series of different height and the projective limit has to be taken with respect to these norm maps. For this purpose results from class field theory are transferred to an ''''almost abelian'''' case. In the end micro primes can be described as Galois orbits of norm compatible sequences of normic Lubin-Tate power series. The coefficients of all the Lubin-Tate power series are in finite unramified extensions of the base field. Therefore one can define a field of coefficients for a given norm compatible sequence of normic Lubin-Tate power series. The degree of that field respectively the length of the Galois orbit is at the same time the degree of the corresponding micro prime.

Page generated in 0.0311 seconds