Spelling suggestions: "subject:"bow voltage integrated circuits"" "subject:"wow voltage integrated circuits""
71 |
Tunable filter and receive signal strength indicator for detecting whitespace in the frequency spectrum /Olszewski, Daniel J. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2006. / Includes bibliographical references (p. 199-201). Also available in electronic format on the Internet.
|
72 |
Course grained low power design flow using UPF /Varanasi, Archana. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 67-70).
|
73 |
Multi-threshold asynchronous pipeline circuits /Shreih, Raghid, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 180-186). Also available in electronic format on the Internet.
|
74 |
A sub 1 V bandgap reference circuit /Digvadekar, Ashish A. January 2005 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (leaves 70-72).
|
75 |
Techniques for communication and geolocation using wireless ad hoc networksAhlehagh, Hasti. January 2004 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: error propagation; indoor channel model; localization algorithm. Includes bibliographical references (p.137-142).
|
76 |
Variability-aware low-power techniques for nanoscale mixed-signal circuits.Ghai, Dhruva V. 05 1900 (has links)
New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has been demonstrated through exhaustive simulations. Apart from these methodologies, the application of dual-oxide and dual-threshold techniques at circuit level in order to minimize power and leakage is also explored.
|
77 |
Design Of Low-capacitance And High-speed Electrostatic Discharge (esd) Devices For Low-voltage Protection ApplicationsLi, You 01 January 2010 (has links)
Electrostatic discharge (ESD) is defined as the transfer of charge between bodies at different potentials. The electrostatic discharge induced integrated circuit damages occur throughout the whole life of a product from the manufacturing, testing, shipping, handing, to end user operating stages. This is particularly true as microelectronics technology continues shrink to nano-metric dimensions. The ESD related failures is a major IC reliability concern and results in a loss of millions dollars to the semiconductor industry each year. Several ESD stress models and test methods have been developed to reproduce the real world ESD discharge events and quantify the sensitivity of ESD protection structures. The basic ESD models are: Human body model (HBM), Machine model (MM), and Charged device model (CDM). To avoid or reduce the IC failure due to ESD, the on-chip ESD protection structures and schemes have been implemented to discharge ESD current and clamp overstress voltage under different ESD stress events. Because of its simple structure and good performance, the junction diode is widely used in on-chip ESD protection applications. This is particularly true for ESD protection of lowvoltage ICs where a relatively low trigger voltage for the ESD protection device is required. However, when the diode operates under the ESD stress, its current density and temperature are far beyond the normal conditions and the device is in danger of being damaged. For the design of effective ESD protection solution, the ESD robustness and low parasitic capacitance are two major concerns. The ESD robustness is usually defined after the failure current It2 and on-state resistance Ron. The transmission line pulsing (TLP) measurement is a very effective tool for evaluating the ESD robustness of a circuit or single element. This is particularly helpful in iv characterizing the effect of HBM stress where the ESD-induced damages are more likely due to thermal failures. Two types of diodes with different anode/cathode isolation technologies will be investigated for their ESD performance: one with a LOCOS (Local Oxidation of Silicon) oxide isolation called the LOCOS-bound diode, the other with a polysilicon gate isolation called the polysilicon-bound diode. We first examine the ESD performance of the LOCOS-bound diode. The effects of different diode geometries, metal connection patterns, dimensions and junction configurations on the ESD robustness and parasitic capacitance are investigated experimentally. The devices considered are N+/P-well junction LOCOS-bound diodes having different device widths, lengths and finger numbers, but the approach applies generally to the P+/N-well junction diode as well. The results provide useful insights into optimizing the diode for robust HBM ESD protection applications. Then, the current carrying and voltage clamping capabilities of LOCOS- and polysiliconbound diodes are compared and investigated based on both TCAD simulation and experimental results. Comparison of these capabilities leads to the conclusion that the polysilicon-bound diode is more suited for ESD protection applications due to its higher performance. The effects of polysilicon-bound diode’s design parameters, including the device width, anode/cathode length, finger number, poly-gate length, terminal connection and metal topology, on the ESD robustness are studied. Two figures of merits, FOM_It2 and FOM_Ron, are developed to better assess the effects of different parameters on polysilicon-bound diode’s overall ESD performance. As latest generation package styles such as mBGAs, SOTs, SC70s, and CSPs are going to the millimeter-range dimensions, they are often effectively too small for people to handle with fingers. The recent industry data indicates the charged device model (CDM) ESD event becomes v increasingly important in today’s manufacturing environment and packaging technology. This event generates highly destructive pulses with a very short rise time and very small duration. TLP has been modified to probe CDM ESD protection effectiveness. The pulse width was reduced to the range of 1-10 ns to mimic the very fast transient of the CDM pulses. Such a very fast TLP (VFTLP) testing has been used frequently for CDM ESD characterization. The overshoot voltage and turn-on time are two key considerations for designing the CDM ESD protection devices. A relatively high overshoot voltage can cause failure of the protection devices as well as the protected devices, and a relatively long turn-on time may not switch on the protection device fast enough to effectively protect the core circuit against the CDM stress. The overshoot voltage and turn-on time of an ESD protection device can be observed and extracted from the voltage versus time waveforms measured from the VFTLP testing. Transient behaviors of polysilicon-bound diodes subject to pulses generated by the VFTLP tester are characterized for fast ESD events such as the charged device model. The effects of changing devices’ dimension parameters on the transient behaviors and on the overshoot voltage and turn-on time are studied. The correlation between the diode failure and poly-gate configuration under the VFTLP stress is also investigated. Silicon-controlled rectifier (SCR) is another widely used ESD device for protecting the I/O pins and power supply rails of integrated circuits. Multiple fingers are often needed to achieve optimal ESD protection performance, but the uniformity of finger triggering and current flow is always a concern for multi-finger SCR devices operating under the post-snapback region. Without a proper understanding of the finger turn-on mechanism, design and realization of robust SCRs for ESD protection applications are not possible. Two two-finger SCRs with different combinations of anode/cathode regions are considered, and their finger turn-on vi uniformities are analyzed based on the I-V characteristics obtained from the transmission line pulsing (TLP) tester. The dV/dt effect of pulses with different rise times on the finger turn-on behavior of the SCRs are also investigated experimentally. In this work, unless noted otherwise, all the measurements are conducted using the Barth 4002 transmission line pulsing (TLP) and Barth 4012 very-fast transmission line pulsing (VFTLP) testers.
|
78 |
Energy efficient design of the delay-insensitive asynchronous circuitsWeng, Ning 01 October 2000 (has links)
No description available.
|
79 |
An asynchronous forth microprocessor.January 2000 (has links)
Ping-Ki Tsang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 87-95). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation and Aims --- p.1 / Chapter 1.2 --- Contributions --- p.3 / Chapter 1.3 --- Overview of the Thesis --- p.4 / Chapter 2 --- Asynchronous Logic g --- p.6 / Chapter 2.1 --- Motivation --- p.6 / Chapter 2.2 --- Timing Models --- p.9 / Chapter 2.2.1 --- Fundamental-Mode Model --- p.9 / Chapter 2.2.2 --- Delay-Insensitive Model --- p.10 / Chapter 2.2.3 --- QDI and Speed-Independent Models --- p.11 / Chapter 2.3 --- Asynchronous Signalling Protocols --- p.12 / Chapter 2.3.1 --- 2-phase Handshaking Protocol --- p.12 / Chapter 2.3.2 --- 4-phase Handshaking Protocol --- p.13 / Chapter 2.4 --- Data Representations --- p.14 / Chapter 2.4.1 --- Dual Rail Coded Data --- p.15 / Chapter 2.4.2 --- Bundled Data --- p.15 / Chapter 2.5 --- Previous Asynchronous Processors --- p.16 / Chapter 2.6 --- Summary --- p.20 / Chapter 3 --- The MSL16 Architecture --- p.21 / Chapter 3.1 --- RISC Machines --- p.21 / Chapter 3.2 --- Stack Machines --- p.23 / Chapter 3.3 --- Forth and its Applications --- p.24 / Chapter 3.4 --- MSL16 --- p.26 / Chapter 3.4.1 --- Architecture --- p.28 / Chapter 3.4.2 --- Instruction Set --- p.30 / Chapter 3.4.3 --- The Datapath --- p.32 / Chapter 3.4.4 --- Interrupts and Exceptions --- p.33 / Chapter 3.4.5 --- Implementing Forth primitives --- p.34 / Chapter 3.4.6 --- Code Density Estimation --- p.34 / Chapter 3.5 --- Summary --- p.35 / Chapter 4 --- Design Methodology --- p.37 / Chapter 4.1 --- Basic Notation --- p.38 / Chapter 4.2 --- Specification of MSL16A --- p.39 / Chapter 4.3 --- Decomposition into Concurrent Processes --- p.41 / Chapter 4.4 --- Separation of Control and Datapath --- p.45 / Chapter 4.5 --- Handshaking Expansion --- p.45 / Chapter 4.5.1 --- 4-Phase Handshaking Protocol --- p.46 / Chapter 4.6 --- Production-rule Expansion --- p.47 / Chapter 4.7 --- Summary --- p.48 / Chapter 5 --- Implementation --- p.49 / Chapter 5.1 --- C-element --- p.49 / Chapter 5.2 --- Mutual Exclusion Elements --- p.51 / Chapter 5.3 --- Caltech Asynchronous Synthesis Tools --- p.53 / Chapter 5.4 --- Stack Design --- p.54 / Chapter 5.4.1 --- Eager Stack Control --- p.55 / Chapter 5.4.2 --- Lazy Stack Control --- p.56 / Chapter 5.4.3 --- Eager/Lazy Stack Datapath --- p.53 / Chapter 5.4.4 --- Pointer Stack Control --- p.61 / Chapter 5.4.5 --- Pointer Stack Datapath --- p.62 / Chapter 5.5 --- ALU Design --- p.62 / Chapter 5.5.1 --- The Addition Operation --- p.63 / Chapter 5.5.2 --- Zero-Checker --- p.64 / Chapter 5.6 --- Memory Interface and Tri-state Buffers --- p.64 / Chapter 5.7 --- MSL16A --- p.65 / Chapter 5.8 --- Summary --- p.66 / Chapter 6 --- Results --- p.67 / Chapter 6.1 --- FPGA based implementation of MSL16 --- p.67 / Chapter 6.2 --- MSL16A --- p.69 / Chapter 6.2.1 --- A Comparison of 3 Stack Designs --- p.69 / Chapter 6.2.2 --- Evaluation of the ALU --- p.73 / Chapter 6.2.3 --- Evaluation of MSL16A --- p.74 / Chapter 6.3 --- Summary --- p.81 / Chapter 7 --- Conclusions --- p.83 / Chapter 7.1 --- Future Work --- p.85 / Bibliography --- p.87 / Publications --- p.95
|
80 |
Just-In-Time Power Gating of GasP CircuitsPadwal, Prachi Gulab 13 February 2013 (has links)
In modern integrated circuits, one way to reduce power consumption is to turn off power to parts of the circuit when those are idle. This method is called power gating. This thesis presents a state-preserving technique to achieve power savings in GasP family of asynchronous circuits by turning off the power when the circuit is idle. The power control logic turns on the power in anticipation of the receiving data. The power control logic turns off the power when the stage is idle either because it is empty or because the pipeline is clogged. The low logical effort of GasP circuits makes just-in-time power gating possible on a stage-by-stage basis. A new latch called Lazy Latch is introduced in this thesis. The lazy latch preserves its output and permits power gating of its larger transistors. The lazy latch is power efficient because it drives strongly only when necessary. A new latch called Blended Latch is proposed in this thesis which blends the advantages of the Conventional latches and the Lazy latches. Performance of power gating is evaluated by comparing the power-gated pipeline against the non-power gated pipeline. Power savings achieved are dependent on the duty cycle of operation. The fact that just-in-time power gating achieves power savings after it is idle for a minimum of 106 cycles makes it useful in limited applications where a quick start is required after long idle times.
|
Page generated in 0.0962 seconds