Spelling suggestions: "subject:"lowreynolds number"" "subject:"lowerreynolds number""
61 |
<strong>EXPERIMENTAL STUDY OF BOUNDARY LAYER SEPARATION IN A LOW-REYNOLDS, HIGH-DIFFUSION PASSAGE THROUGH INFRARED THERMOGRAPHY</strong>Luis Angel Zarate-Sanchez (14587421) 25 July 2023 (has links)
<p>Highly loaded airfoils in low-pressure turbines (LPTs) suffer from laminar flow separation from the suction side of the airfoils aft of the throat of the passages. This separation harms the performance of the engine by reducing the power extraction from the turning air and ultimately reduces the overall turbine efficiency. Flow control techniques have been investigated to eliminate flow separation in aerodynamic surfaces to abate the losses associated with it. This Master of Science Thesis investigates the design, implementation and testing of pulsated injection actuation in a low-Reynolds flow over a wall-mounted hump.</p>
<p>Furthermore, this Thesis expands on the existing expertise in the infrared (IR) thermography measurement technique at the Purdue Experimental Turbine Aerothermal Lab. This is done through an investigation of the factors affecting the IR measurement technique and the development of an optical instrument (borescope) to implement in an annular cascade wind tunnel. IR thermography is used on the wall-mounted hump blowdown tests to detect the separation point in the boundary layer using two techniques: by an investigation of the surface temperature distribution and an investigation of the heat transfer behavior at the surface. Finally, the borescope is commissioned through the first testing campaign of the LPT airfoils, and are processed to thermally investigate the passage.</p>
<p>This thesis succeeds in expanding the IR capabilities within PETAL, and at demonstrating pulsated injection as an effective method to eliminate flow separation. Furthermore, IR successfully detects flow separation on the wall-mounted hump through the two methods presented, as well as detecting the boundary layer reattachment caused by the flow control technique. The limitations of the thermal methodology, as well as those of the optical probe are addressed, and the uncertainties in the measurements are quantified. Finally, steps to continue the studies are suggested at the end of each methodology chapter, including the potential redesign of the IR borescope to improve the quality of measurements. </p>
|
62 |
Surface Stress Sensors for Closed Loop Low Reynolds Number Separation ControlMarks, Christopher R. 18 July 2011 (has links)
No description available.
|
63 |
Measurement of Static and Dynamic Performance Characteristics of Electric Propulsion SystemsBrezina, Aron Jon 21 June 2012 (has links)
No description available.
|
64 |
Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flowsCatalina Maria Rua Alvarez 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
|
65 |
Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flowsAlvarez, Catalina Maria Rua 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
|
66 |
Experimental Investigation of Transition over a NACA 0018 Airfoil at a Low Reynolds NumberBoutilier, Michael Stephen Hatcher January 2011 (has links)
Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100,000 was investigated experimentally. The effects of experimental setup and analysis tools on the results were also examined.
The sensitivity of linear stability predictions for measured separated shear layer velocity profiles to both the analysis approach and experimental data scatter was evaluated. Analysis approaches that are relatively insensitive to experimental data scatter were identified. Stability predictions were shown to be more sensitive to the analysis approach than to experimental data scatter, with differences in the predicted maximum disturbance growth rate and corresponding frequency of approximately 35% between approaches.
A parametric study on the effects of experimental setup on low Reynolds number airfoil experiments was completed. It was found that measured lift forces and vortex shedding frequencies were affected by the end plate configuration. It was concluded that the ratio of end plate spacing to projected model height should be at least seven, consistent with the guideline for circular cylinders. Measurements before and after test section wall streamlining revealed errors in lift coefficients due to blockage as high as 9% and errors in the wake vortex shedding frequency of 3.5%.
Shear layer development over the model was investigated in detail. Flow visualization images linked an observed asymmetry in wake velocity profiles to pronounced vortex roll-up below the wake centerline. Linear stability predictions based on the mean hot-wire profiles were found to agree with measured disturbance growth rates, wave numbers, and streamwise velocity fluctuation profiles. Embedded surface pressure sensors were shown to provide reasonable estimates of disturbance growth rate, wave number, and convection speed for conditions at which a separation bubble formed on the airfoil surface. Convection speeds of between 30 and 50% of the edge velocity were measured, consistent with phase speed estimates from linear stability theory.
|
67 |
Near-Field Study of Multiple Interacting Jets : Confluent JetsGhahremanian, Shahriar January 2015 (has links)
This thesis deals with the near-field of confluent jets, which can be of interest in many engineering applications such as design of a ventilation supply device. The physical effect of interaction between multiple closely spaced jets is studied using experimental and numerical methods. The primary aim of this study is to explore a better understanding of flow and turbulence behavior of multiple interacting jets. The main goal is to gain an insight into the confluence of jets occurring in the near-field of multiple interacting jets. The array of multiple interacting jets is studied when they are placed on a flat and a curved surface. To obtain the boundary conditions at the nozzle exits of the confluent jets on a curved surface, the results of numerical prediction of a cylindrical air supply device using two turbulence models (realizable 𝑘 − 𝜖 and Reynolds stress model) are validated with hot-wire anemometry (HWA) near different nozzles discharge in the array. A single round jet is then studied to find the appropriate turbulence models for the prediction of the three-dimensional flow field and to gain an understanding of the effect of the boundary conditions predicted at the nozzle inlet. In comparison with HWA measurements, the turbulence models with low Reynolds correction (𝑘 − 𝜖 and shear stress transport [SST] 𝑘 − 𝜔) give reasonable flow predictions for the single round jet with the prescribed inlet boundary conditions, while the transition models (𝑘 − 𝑘l − 𝜔𝜔 and transition SST 𝑘 − 𝜔) are unable to predict the flow in the turbulent region. The results of numerical prediction (low Reynolds SST 𝑘 − 𝜔 model) using the prescribed inlet boundary conditions agree well with the HWA measurement in the nearfield of confluent jets on a curved surface, except in the merging region. Instantaneous velocity measurements are performed by laser Doppler anemometry (LDA) and particle image velocimetry (PIV) in two different configurations, a single row of parallel coplanar jets and an inline array of jets on a flat surface. The results of LDA and PIV are compared, which exhibit good agreement except near the nozzle exits. The streamwise velocity profile of the jets in the initial region shows a saddle back shape with attenuated turbulence in the core region and two off-centered narrow peaks. When confluent jets issue from an array of closely spaced nozzles, they may converge, merge, and combine after a certain distance downstream of the nozzle edge. The deflection plays a salient role for the multiple interacting jets (except in the single row configuration), where all the jets are converged towards the center of the array. The jet position, such as central, side and corner jets, significantly influences the development features of the jets, such as velocity decay and lateral displacement. The flow field of confluent jets exhibits asymmetrical distributions of Reynolds stresses around the axis of the jets and highly anisotropic turbulence. The velocity decays slower in the combined regio of confluent jets than a single jet. Using the response surface methodology, the correlations between characteristic points (merging and combined points) and the statistically significant terms of the three design factors (inlet velocity, spacing between the nozzles and diameter of the nozzles) are determined for the single row of coplanar parallel jets. The computational parametric study of the single row configuration shows that spacing has the greatest impact on the near-field characteristics.
|
68 |
Experimental Investigation of Transition over a NACA 0018 Airfoil at a Low Reynolds NumberBoutilier, Michael Stephen Hatcher January 2011 (has links)
Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100,000 was investigated experimentally. The effects of experimental setup and analysis tools on the results were also examined.
The sensitivity of linear stability predictions for measured separated shear layer velocity profiles to both the analysis approach and experimental data scatter was evaluated. Analysis approaches that are relatively insensitive to experimental data scatter were identified. Stability predictions were shown to be more sensitive to the analysis approach than to experimental data scatter, with differences in the predicted maximum disturbance growth rate and corresponding frequency of approximately 35% between approaches.
A parametric study on the effects of experimental setup on low Reynolds number airfoil experiments was completed. It was found that measured lift forces and vortex shedding frequencies were affected by the end plate configuration. It was concluded that the ratio of end plate spacing to projected model height should be at least seven, consistent with the guideline for circular cylinders. Measurements before and after test section wall streamlining revealed errors in lift coefficients due to blockage as high as 9% and errors in the wake vortex shedding frequency of 3.5%.
Shear layer development over the model was investigated in detail. Flow visualization images linked an observed asymmetry in wake velocity profiles to pronounced vortex roll-up below the wake centerline. Linear stability predictions based on the mean hot-wire profiles were found to agree with measured disturbance growth rates, wave numbers, and streamwise velocity fluctuation profiles. Embedded surface pressure sensors were shown to provide reasonable estimates of disturbance growth rate, wave number, and convection speed for conditions at which a separation bubble formed on the airfoil surface. Convection speeds of between 30 and 50% of the edge velocity were measured, consistent with phase speed estimates from linear stability theory.
|
69 |
Co-located offshore wind and tidal stream turbinesLande-Sudall, David January 2017 (has links)
Co-location of offshore wind turbines at sites being developed for tidal stream arrays has been proposed as a method to increase capacity and potentially reduce the cost of electricity compared to operating either technology independently. This research evaluates the cost of energy based on capital expenditure and energy yield. It is found that, within the space required around a single 3 MW wind turbine, co-location provides a 10-16% cost saving compared to operating the same size tidal-only array without a wind turbine. Furthermore, for the same cost of electricity, a co-located farm could generate 20% more yield than a tidal-only array. These results are based on analysis of a case-study site in the Pentland Firth. Wind energy is assessed using an eddy viscosity wake model in OpenWind, with a 3 MW rated power curve and thrust coefficient from a Vestas V90 turbine. Three years of wind resource data is from the UK Met Office UK Variable (UKV) 1.5 km numerical model and corrected against a 400 m Weather Research and Forecasting (WRF) model run over the site. Tidal stream energy is modelled using a semi-empirical superposition of self-similar plane wakes, with a generic 1 MW rated power curve and thrust based on a full-scale, fixed-pitch turbine. Coincident tidal resource data is from the Forecasting Ocean Assimilation Model (FOAM) at 7.5 km resolution and correlated with a 150 m ADvanced CIRCulation model (ADCIRC). Wave parameters are corrected from ERA-Interim data with six months of wave buoy data. Multiple tidal turbine array layouts are considered, with maximum tidal energy generated for a staggered array with spacing of 20 tidal turbine diameters, Dt , streamwise and 1.5Dt cross-stream. However, cheapest cost of electricity from the tidal-only array, was found for a single row of turbines, due to minimal wake effects. Laboratory experiments were undertaken to validate the superposition wake model for use with large, shared support structures. Two rotors mounted either side of a central tower generate a peak wake velocity deficit 70% greater than predicted by superposition. This was due to high local blockage and a complex near-wake structure, with a corresponding increase in tower drag of 9%. Further experiments evaluated the impact of oblique inflow on turbines yawed at +/-15 degrees. These results validated a theoretical cosine correction for thrust coefficient and characterised the centreline wake drift with downstream distance. Extreme environmental loads for a shared support structure, compared to structures for wind-only and tidal-only, have also been modelled. A non-linear wave model was used to represent a single wave form with 1% occurrence for each hour of time-series data. Overturning moment about the base of a shared support, with one wind and two tidal turbines, was found to be 4.5% larger than for a wind-only turbine in strong current and with turbines in different operational states. Peak loads across the tidal array were found to vary by 2.5% and so little load reduction benefit could be gained by locating a shared support in a more sheltered area of the array.
|
70 |
Mélange dans les suspensions de particules cisaillées à bas nombre de Reynolds / Mixing in particulate suspensions sheared at low Reynolds number.Souzy, Mathieu 26 September 2016 (has links)
J'ai étudié expérimentalement, à l'échelle de la taille des particules, les mécanismes à l'origine de l'intensification des transferts ayant lieu dans les suspensions cisaillées de particules non-inertielles et non-Browniennes. Dans un premier temps, l'expérience de Taylor est revisitée en étudiant l'évolution d'une goutte de colorant soumise à un cisaillement périodique. Au-delà d'une amplitude critique de déformation, la présence des particules brise la réversibilité du système et induit une forte dispersion de la goutte de colorant. Ensuite, en m'intéressant au transfert en proche paroi, j'ai montré que la rotation des particules sur la paroi induit un transport à flux constant d'un scalaire jusque dans le bulk de la suspension, brisant la couche limite diffusive. Une solution analytique du profil de concentration dans cette zone est proposée, en bon accord avec les expériences. Finalement, des mesures PIV haute résolution du fluide interstitiel dans le bulk de la suspension ont été réalisées. A partir de ces champs de vitesses, on a reconstruit l'historique d'étirement de lignes matérielles du fluide et ainsi déterminé les lois d'étirement, information fondamentale pour la compréhension du processus de mélange. La présence des particules change les lois d'étirement qui passent de linéaires dans un fluide pur, à exponentielles en présence de particules. Un modèle d'étirements multiplicatifs est proposé, qui prédit quantitativement l'évolution de la moyenne, de la variance, et la forme log-normale des distributions d'étirements mesurées expérimentalement. L'inhomogénéité des étirements dans les suspensions cisaillées implique une large distribution du temps de mélange. / Mainly based on experiments, I investigated at a particle scale the mechanisms at the origin of the transfer enhancement in sheared non-Brownian and non-inertial particulate suspensions. First, I revisited Taylor's experiment, investigating the evolution of a drop of dye in a periodic shear. Beyond a critical strain amplitude, the presence of the particles breaks the reversibility of the system and the drop of dye is rapidly dispersed in the surrounding medium. Then, investigating the transfer process in the wall vicinity, I showed that in this region, the rotation of the particles convectively transport a scalar at a constant rate directly from the wall towards the bulk of the suspension, breaking the diffusive boundary layer. An analytical solution for the concentration profile in this region is proposed, in good agreement with experimental measurements. Lastly, high-resolution PIV measurements of the fluid phase were performed in the bulk of the suspension. Using these velocity fields, we reconstructed the stretching histories of fluid material lines to determine the stretching laws, crucial for the understanding of the mixing process. The presence of the particles changes the very nature of the stretching laws from linear, in a pure fluid, to exponential in the presence of particles. A multiplicative stretching model is proposed, which quantitatively predicts the experimentally measured evolution of the mean and the variance of the elongations of the fluid material lines as well as their evolution towards a log-normal distribution. The strong stretching inhomogeneity in sheared suspensions results in a broad distribution of the mixing time.
|
Page generated in 0.0709 seconds