• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study of Smart Ventilation System for Maintaining Healthy Living by Optimal Energy Consumption : A case study on Dalarnas Villa

Arshad, Fasiha January 2020 (has links)
Indoor air quality is a measure of clean air with comfort conditions and depiction of lower concentration of air pollutants. It is tedious task to achieve all quality measures at a time with smart energy consumption. This research aims to come up with a solution of how to improve smart ventilation system in order to get clean indoor air with less consumption of electric energy. Many studies showed that scheduled ventilation system has proven to be a good solution to this problem. For this purpose, a long-term sensor data of smart ventilation system Renson healthbox and Luvians data is studied which is operated in Dalarnas villa. This research investigates how this system works in two modes and to improve it by customized scheduling.A regression model is constructed in which the relationship between airflow and CO2 is shown. For this purpose, correlation analysis is used in which the connection of bonds between each data features are analyzed. After the feature selection, as a result from correlation matrix, regression analysis is used to find out whether the selected features are linearly related or not. Regression analysis also used for the intent to quantify a model to estimate the flowrate and CO2. A mathematical model is also build to simulate the flowrate and CO2 with energy consumption.The results showed that, in order to provide better indoor air quality with efficient energy consumption, a necessary modification of the fan schedule should be done in a way that fan must be started little bit earlier to avoid harmful particles reach their upper threshold limits. This can result in reduction of fan’s maximum speed hence consumption of less energy is achieved.
12

[pt] MODELAGEM DE UM CIRCUITO DE TERMOSSIFÃO DE BAIXO IMPACTO AMBIENTAL COM APLICAÇÃO EM RESFRIAMENTO DE ELETRÔNICOS / [en] MODELING OF A TWO-PHASE THERMOSYPHON LOOP WITH LOW ENVIRONMENTAL IMPACT REFRIGERANT APPLIED TO ELECTRONIC COOLING

VERONICA DA ROCHA WEAVER 04 October 2021 (has links)
[pt] Diante dos constantes avanços da tecnologia os dispositivos eletrônicos vêm passando por um processo de miniaturização, ao mesmo tempo em que sustentam um aumento de potência. Essa tendência se mostra um desafio para seu gerenciamento térmico, uma vez que os sistemas de resfriamento típicos para eletrônicos utilizam ar como fluido de trabalho, e o seu baixo coeficiente de transferência de calor limita sua capacidade de atender às necessidades térmicas da indústria atual. Nesse sentido, o resfriamento bifásico tem sido considerado uma solução promissora para fornecer resfriamento adequado para dispositivos eletrônicos. Circuitos de termossifão bifásico combinam a tecnologia de resfriamento bifásico com sua inerente natureza passiva, já que o sistema não requer uma bomba para fornecer circulação para seu fluido de trabalho, graças às forças da gravidade e de empuxo. Um dissipador de calor de microcanais, localizado bem em cima do dispositivo eletrônico, dissipa o calor gerado. Isto o torna uma solução de baixo custo e energia. Além disso, ter um circuito de termossifão operando com um refrigerante de baixo GWP, como o R-1234yf, resulta em baixo impacto para o meio ambiente, uma vez que é um refrigerante ecologicamente correto e o sistema tem baixo ou nenhum consumo de energia. Este trabalho fornece um modelo numérico detalhado para a simulação de um circuito de termossifão bifásico, operando em condições de regime permanente. O circuito compreende um evaporador (chip e dissipador de calor de micro-aletas), um riser, um condensador refrigerado a água de tubo duplo e um downcomer. Equações fundamentais e constitutivas foram estabelecidas para cada componente. Um método numérico de diferenças finitas, 1-D para o escoamento do fluido por todos os componentes do sistema, e 2-D para a condução de calor no chip e evaporador foi empregado. O modelo foi validado com dados experimentais para o refrigerante R134a, mostrando uma discrepância em relação ao fluxo de massa em torno de 6 por cento, para quando o sistema operava sob regime dominado pela gravidade. A pressão de entrada do evaporador prevista apresentou um erro relativo máximo de 4,8 por cento quando comparada aos resultados experimentais. Além disso, a maior discrepância da temperatura do chip foi inferior a 1 grau C. Simulações foram realizadas para apresentar uma comparação de desempenho entre o R134a e seu substituto ecologicamente correto, R1234yf. Os resultados mostraram que quando o sistema operava com R134a, ele trabalhava com uma pressão de entrada no evaporador mais alta, assim como, com um fluxo de massa mais alto. Por causa disso, o R134a foi capaz de manter a temperatura do chip mais baixa do que o R1234yf. No entanto, essa diferença na temperatura do chip foi levemente inferior a 1 grau C, mostrando o R1234yf como comparável em desempenho ao R134a. Além disso, o fator de segurança da operação do sistema foi avaliado para ambos os refrigerantes, e para um fluxo de calor máximo do chip de 33,1 W/cm2, R1234yf mostrou um fator de segurança acima de 3. Isso significa que o circuito de termossifão pode operar com segurança abaixo do ponto crítico de fluxo de calor. Dada a investigação sobre a comparação de desempenho dos refrigerantes R134a e R1234yf, os resultados apontaram o R1234yf como um excelente substituto ecologicamente correto para o R134a, para operação em um circuito de termossifão bifásico. / [en] Given the constant advances in technology, electronic devices have been going through a process of miniaturization while sustaining an increase in power. This trend proves to be a challenge for thermal management since commonly electronic cooling systems are air-based, so that the low heat transfer coefficient of air limits its capacity to keep up with the thermal needs of today s industry. In this respect, two-phase cooling has been regarded as a promising solution to provide adequate cooling for electronic devices. Two-phase thermosyphon loops combine the technology of two-phase cooling with its inherent passive nature, as the system does not require a pump to provide circulation for its working fluid, thanks to gravity and buoyancy forces. A micro-channel heat sink located right on top of the electronic device dissipates the heat generated. This makes for an energy and cost-efficient solution. Moreover, having a thermosyphon loop operating with a low GWP refrigerant such as R-1234yf results in low impact for the environment since it is an environmentally friendly refrigerant, and the system has low to none energy consumption. This work provides a detailed numerical model for the simulation of a two-phase thermosyphon loop operating under steady-state conditions. The loop comprises an evaporator (chip and micro-fin heat sink), a riser, a tube-in-tube water-cooled condenser and a downcomer. Fundamental and constitutive equations were established for each component. A finite-difference method, 1-D for the flow throughout the thermoysphon s components and 2-D for the heat conduction in the evaporator and chip, was employed. The model was validated against experimental data for refrigerant R134a, showing a mass flux discrepancy of around 6 percent for when the system operated under gravity dominant regime. The predicted evaporator inlet pressure showed a maximum relative error of 4.8 percent when compared to the experimental results. Also, the chip temperature s largest discrepancy was lower than 1 C degree. Simulations were performed to present a performance comparison between R134a and its environmentally friendly substitute, R1234yf. Results showed that when the system operated with R134a, it yielded a higher evaporator inlet pressure as well as a higher mass flux. Because of that, R134a was able to keep the chip temperature lower than R1234yf. Yet, that difference in chip temperature was slightly lower than 1 C degree, showing R1234yf as comparable in performance to R134a. In addition, the safety factor of the system s operation was evaluated for both refrigerants, and for a maximum chip heat flux of 33.1 W/cm2, R1234yf showed a safety factor above 3. This means the thermosyphon loop can operate safely under the critical heat flux. Given the investigation on the performance comparison of refrigerants R134a and R1234yf, results pointed to R1234yf being a great environmentally friendly substitute for R134a for the two-phase thermosyphon loop.
13

Energy-aware localization based on an optimized anchor deployment in wireless sensor networks

El Houssaini, Dhouha 16 January 2023 (has links)
Various applications of Wireless Sensor Networks (WSNs) require accurate localization of sensor nodes. The quantity and locations of anchor nodes, which serve as reference points for distance estimates, as well as the localization process itself, affect the localization accuracy. Furthermore, because numerous communications are sent between nodes for localization, energy consumption must be considered. This work presents an energy-aware and accurate localization method. It is based on a combined anchor deployment and energy-aware localization. The proper number and distribution of anchors have been investigated to achieve full network coverage and connectivity based on an efficient and heterogeneous hexagonal deployment. Later, energy-aware localization is performed in three stages: Initialization, signal acquisition, and anchor selection. The initialization step allows the network to be adaptable to sudden changes by establishing anchor connectivity and creating the neighbors' list. Meanwhile, the Received Signal Strength Indicator (RSSI) is used for distance measurements between nodes, with the implementation of a Kalman filter to reduce signal attenuation and noise. Later, the anchor selection is done using fuzzy logic with inference parameters: RSSI, node density, and residual energy. This step ensures that only operable anchors engage in localization, while anchors with inadequate energy sources remain intact to ensure their future availability.:1 Introduction 2 Theoretical background 3 Energy-aware outdoor deployment and localization 4 Proposed anchor deployment method 5 Proposed energy-aware localization method 6 Experimental validation of the proposed localization method / Verschiedene Anwendungen von drahtlosen Sensornetzwerken (WSNs) erfordern eine genaue Lokalisierung von Sensorknoten. Die Anzahl und Standorte der Ankerknoten, die als Referenzpunkte für Entfernungsschätzungen dienen, sowie der Lokalisierungsprozess selbst beeinflussen die Lokalisierungsgenauigkeit. Da für die Lokalisierung zahlreiche Nachrichten zwischen den Knoten gesendet werden, muss außerdem der Energieverbrauch berücksichtigt werden. In dieser Arbeit wird eine energiebewusste und genaue Lokalisierungsmethode vorgestellt. Sie basiert auf einer Kombination aus effizienter Ankerknotennutzung und energiebewusster Lokalisierung. Die richtige Anzahl und Verteilung von Ankern wurde untersucht, um eine vollständige Netzabdeckung und Konnektivität auf der Grundlage einer effizienten und heterogenen hexagonalen Verteilung zu erreichen. Später wird die energiebewusste Lokalisierung in drei Stufen durchgeführt: Initialisierung, Signalerfassung und Ankerauswahl. Der Initialisierungsschritt ermöglicht es dem Netzwerk, sich an plötzliche Veränderungen anzupassen, indem es die Verbindung zu den Ankern und die Liste der Nachbarn erstellt. Zunächst wird der Received Signal Strength Indicator (RSSI) für die Entfernungsmessung zwischen den Knoten verwendet, wobei ein Kalman-Filter implementiert wird, um Signalabschwächung und Rauschen zu reduzieren. Später erfolgt die Ankerauswahl mit Hilfe von Fuzzy-Logik und Inferenzparametern: RSSI, Knotendichte und Restenergie. Dieser Schritt stellt sicher, dass nur funktionsfähige Anker an der Lokalisierung teilnehmen, während Anker mit unzureichenden Energiequellen intakt bleiben, um ihre zukünftige Verfügbarkeit zu gewährleisten.:1 Introduction 2 Theoretical background 3 Energy-aware outdoor deployment and localization 4 Proposed anchor deployment method 5 Proposed energy-aware localization method 6 Experimental validation of the proposed localization method
14

Revitalizace hotelového zařízení, Přehrada Brno / Revitalisation of the Hotel Facility by the Brno Artificial Lake

Švec, Martin Unknown Date (has links)
This is the proposal of the new utilization of the former recreational centre, which is situated in the beautiful surrounding of the Brno lake. It has been abandoned for many years and is suffering from decay. It has been built in the 1970's for the demand of the Socialistic youth union (remark: the youth organisation of the communist's party). There were held international political conventions and educational sojourns for the students of high schools and universities. The new utilization will be analogous. Only the communist's ideals will be replaced with the ideals of today's democratical society – especially friendly relations between mankind and environment. There will be created the environmental educational centre with the meeting spaces, conference hall and accomodation. The universal concept enables the usage of the facility also for the international students' workshops, training courses, teambuilding events etc. The ecological educational centre primarily makes the good example and is the live educational requisite. Thanks to the concept of the original facility is very convenient the refurbishment to the standard of the energetically passive building, which consists from the natural materials and utilizes renewable energy resources. Because of the very poor technical condition and devastation of the building will be re-used only basement and steel framework. This solution is more economical than the demolition and following new construction. The construction core of the building is almost for free. However, only if we make minimal changes in the framework and we preserve the original building's shape. On the steel framework will be created the new lightweight housing, which will be made from wood, straw pannels and filled with the cannabis thermal insulation. Almost all the roofs will be covered with the photovoltaic foils and the heat source will be air heat pump. The area is very pleasant place to stay. It's full of sunshine all day long and offers very beautiful view of the lake. The main building and bungalows profit of the attractive views. All the former recreational area has was designed to make the people meeting together and to provide the freedom of move and wide variety of activities. However, the rooms and bungalows provide the highest privacy. The inside and outside of the buildings are shading into each other. All the recreational ground – in exterior and interior – is full of liveliness, in the opposite of the rooms, which are the private islands. This aspect, which is present in the former concept from the 1970's, is to be preserved. The former hotel building is distinguished by the quality architectural concept, above-average in the age of origin. It is thanks to the dynamically balanced composition – inspirative today too, and visually interesting interior design of the meeting spaces. This proposal attempts to continue in this qualities. The ground is enriched with the relaxational spaces and the outside gym path. In the opposite of the original state the area is open to the public and is utilized as a park for leisure activities.

Page generated in 0.0373 seconds