Spelling suggestions: "subject:"lowerpower"" "subject:"compower""
241 |
Energy-Efficient Multiple-Word Montgomery Modular MultiplierChen, Chia-Wen 25 July 2012 (has links)
Nowadays, Internet plays an indispensable role in human lives. People use Internet to search information, transmit data, download ?le, and so on. The data transformed to the composed digital signal by ¡¦0¡¦ and ¡¦1¡¦ are transmitted on Internet . However, Internet is open and unreliable, data may be stolen from the other people if they are not encrypted. In order to ensure the security and secret of data, the cryptosystem is very important.
RSA is a famous public-key cryptosystem, and it has easy concept and high security. It needs a lot of modular exponentiations while encryption or decryption. The key length of RSA is always larger than 1024 bits to ensure the high security. In order to achieve real time transmission, we have to speed up the RSA cryptosystem. Therefore, it must be implemented on hardware.
In RSA cryptosystem, modular exponentiation is the only operation. Modular exponentiation is based on modular multiplications. Montgomery¡¦s Algorithm used simple additions and shifts to implement the complex modular multiplication. Because the key length is usually larger than 1024 bits, some signals have a lot of fan-outs in hardware architecture. Therefore, the signals have to connect buffers to achieve enough driving ability. But, it may lead to longer delay time and more power consumption. So, Tenca et al. proposed a Multiple Word Montgomery Algorithm to improve the problem of fan-out. Recently, Huang et al. proposed an algorithm which can reduce data dependency of Tenca¡¦s algorithm.
This research is based on the architecture of Huang¡¦s algorithm and detects the redundant operations. Then, we block the unnecessary signals to reduce the switch activities. Besides, we use low power shift register to reduce the power consumption of shift register. Experimental results show that our design is useful on decreasing power consumption.
|
242 |
Multi-precision Function Interpolator for Multimedia ApplicationsCheng, Chien-Kang 25 July 2012 (has links)
A multi-precision function interpolator, which is fitted in with the IEEE-754 single precision floating point standard, is proposed in this paper. It provides logarithms, exponentials, reciprocal and square root reciprocal operations. Each operation is able to dynamically select four different precision modes in demand. The hardware architecture is designed with fully pipeline in order to comply with hardware architectures of general digital signal processors (DSPs) and graphics processors (GPUs).
When considering the usefulness of each precision mode, it is designed to minimize the error among various modes as far as possible in the beginning. According to the precision from high to low, function interpolator can provide 23, 18, 13 and 8-bit accuracy respectively in spite of the rounding effect. This function interpolator is designed based on the look-up table method. It can get the approximation value of target function through the calculation of quadratic polynomial. The coefficient of quadratic polynomial is obtained by piecewise minimax approximation. Before implementing the hardware, we use the Maple algebra software to generate the quadratic polynomial coefficients of aforementioned four operations, and estimate whether these coefficients can meet IEEE-754 single precision floating point standard. In addition, we take the exhaustive search to check the results generated by our implementation to make sure that it can meet the requirements for various operations and precision modes.
When performing one of the above four operations, only the tables of the operation are used to obtain the quadratic polynomial coefficient. Therefore, we can take the advantage of the tri-state buffer as a switch to reduce dynamic power consumption of tables for the other three operations. In addition, when performing lower precision modes, we can turn off a part of hardwares, which are used to calculate the quadratic polynomial, to save the power consumption more effectively. By providing multi-precision hardware, we hope users or developers, those who use the battery device, can choose a lower precision mode within the permissible error range to extend the battery life.
|
243 |
Ultra Low Power IEEE 802.15.4/ZIGBEE Compliant TransceiverHussien, Faisal A. 2009 December 1900 (has links)
Low power wireless communications is the most demanding request among all
wireless users. A battery life that can survive for years without being replaced, makes it
realistic to implement many applications where the battery is unreachable (e.g. concrete
walls) or expensive to change (e.g underground applications). IEEE 802.15.4/ZIGBEE
standard is published to cover low power low cost applications, where the battery life
can last for years, because of the 1% duty cycle of operation.
A fully integrated 2.4GHz IEEE802.15.4 Compliant transceiver suitable for low
power, low cost ZIGBEE applications is implemented. Direct conversion architecture is
used in both Receiver and Transmitter, to achieve the minimum possible power and area.
The chip is fabricated in a standard 0.18um CMOS technology. In the transmit mode, the
transmitter chain (Modulator to PA) consumes 25mW, while in the receive mode, the
iv
receiver chain (LNA to Demodulator) consumes 5mW. The Integer-N Frequency
Synthesizer consumes 8.5mW.
Other Low power circuits are reported; A 13.56 Passive RFID tag and a low power
ADC suitable for Built-In-Testing applications.
|
244 |
A 1.1V 25£gW Sigma-Delta modulator for voice applicationsYang, Shu-Ting 11 July 2005 (has links)
A low voltage low power sigma¡Vdelta modulator for voice applications is presented. The implementation of proposed sigma-delta modulator is based on switched-capacitor circuit. Bootstrapped switches were used to replace CMOS transmission gates for increasing the insufficient driving of switched-capacitor circuit under the low voltage operation. To reduce the power dissipation, an improved current mirror OTA were designed with rail-to-rail output swing, which can also make the voltage gain enhance 10~20 dB and overcome the poor voltage gain shortage of traditional current mirror OTA. The post-simulation result shows that the modulator achieves a dynamic range of 77 dB, a peak signal-to-noise ratio of 82 dB, and the sigma-delta modulator dissipates 25£gW under 1.1-V voltage supply, using TSMC 0.18£gm 1P6M CMOS technology.
|
245 |
Low Power Frequency SynthesizerWu, Feng-Ji 21 July 2006 (has links)
This thesis presents the CMOS integer-N frequency synthesizer for 2 GHz 802.11 WLAN applications with 1.8V power supply. The frequency synthesizer is fabricated in a TSMC 0.18£gm CMOS 1P6M technology process. The frequency synthesizer consists of a phase-frequency detector, a charge pump, a loop filter, and a pulse-swallow counter. In pulse-swallow counter, we use less numbers of transistors divide-by-2/3 prescaler to work in high frequency in order to reduce power consumption. We complete the design of pulse-swallow counter for 2-GHz (seven channels) and the 5-GHz (four channels) application. The average power consumption of pulse-swallow counter is 2.49 mW and 2.98 mW for 2-GHz and 5-GHz application respectively. We use Verilog-A language to complete VCO behavior model for frequency synthesizer and utilize the Spectre simulation results justify the feasibility of our proposed frequency synthesizer. The total power consumption of frequency synthesizer is 3.432mW and 4.673mW for 2-GHz and 5-GHz frequency synthesizer, respectively.
|
246 |
Design and implementation of low power multistage amplifiers and high frequency distributed amplifiersMishra, Chinmaya 01 November 2005 (has links)
The advancement in integrated circuit (IC) technology has resulted in scaling down of device sizes and supply voltages without proportionally scaling down the threshold voltage of the MOS transistor. This, coupled with the increasing demand for low power, portable, battery-operated electronic devices, like mobile phones, and laptops provides the impetus for further research towards achieving higher integration on chip and low power consumption. High gain, wide bandwidth amplifiers driving large capacitive loads serve as error amplifiers in low-voltage low drop out regulators in portable devices. This demands low power, low area, and frequency-compensated multistage amplifiers capable of driving large capacitive loads. The first part of the research proposes two power and area efficient frequency compensation schemes: Single Miller Capacitor Compensation (SMC) and Single Miller Capacitor Feedforward Compensation (SMFFC), for multistage amplifiers driving large capacitive loads. The designs have been implemented in a 0.5??m CMOS process. Experimental results show
that the SMC and SMFFC amplifiers achieve gain-bandwidth products of 4.6MHz and 9MHz, respectively, when driving a load of 25Kδ/120pF. Each amplifier operates from a ??1V supply, dissipates less than 0.42mW of power and occupies less than 0.02mm2 of silicon area.
The inception of the latest IEEE standard like IEEE 802.16 wireless metropolitan area network (WMAN) for 10 -66 GHz range demands wide band amplifiers operating at high frequencies to serve as front-end circuits (e.g. low noise amplifier) in such receiver architectures. Devices used in cascade (multistage amplifiers) can be used to increase the gain but it is achieved at an expense of bandwidth. Distributing the capacitance associated with the input and the output of the device over a ladder structure (which is periodic), rather than considering it to be lumped can achieve an extension of bandwidth without sacrificing gain. This concept which is also known as distributed amplification has been explored in the second part of the research. This work proposes certain guidelines for the design of distributed low noise amplifiers operating at very high frequencies. Noise analysis of the distributed amplifier with real transmission lines is introduced. The analysis for gain and noise figure is verified with simulation results from a 5-stage distributed amplifier implemented in a 0.18??m CMOS process.
|
247 |
Design and Fabrication of High Quality-factor Suspending MicroinductorsJiang, Zong-Nan 27 August 2008 (has links)
For the application of 4G wireless communication system, this thesis
aims to develop a high-quality-factor and low-power-dissipation
suspending micro-inductor using electrochemical deposition and surface
micromachining technologies.
This research presents three technical points to improve the quality
factor and reduce the power dissipation of micro inductor, including (i) to
adopt a low resistivity material (copper) as the conducting layer to
decrease the Eddy current due to the skin effect and reduce the total series
resistance and energy loss, (ii) to utilize a suspending structure to
diminish the power loss through the substrate and (iii) to replace the
silicon wafer with a high resistance substrate (Corning 7740) to compress
effectively the power dissipation in high frequency operation.
The implemented suspending micro-inductors were characterized by a
commercial network analyzer (Agilent E5071C) under 0.5~20 GHz
testing frequency range. All the inductances and quality factors of the
micro-inductors proposed in this thesis are extracted by the Agilent ADS
software. The optimized value of the quality factor is around to 24.9 and
the corresponding inductance is equal to 5.43 nH .
|
248 |
Accuracy-energy tradeoffs in digital image processing using embedded computing platformsKim, Se Hun 14 November 2011 (has links)
As more and more multimedia applications are integrated in mobile devices, a significant amount of energy is devoted to digital signal processing (DSP). Thus, reducing energy consumption for DSP systems has become an important design goal for battery operated mobile devices. Since supply voltage scaling is one of the most effective methods to reduce power/energy consumption, this study examines aggressive voltage scaling to achieve significant energy savings by allowing some output quality degradation for error tolerant image processing system. The objective of proposed research is to explore ultra-low energy image processing system design methodologies based on efficient accuracy (quality)-energy tradeoffs.
This dissertation presents several new analyses and techniques to achieve significant energy savings without noticeable quality degradation under aggressive voltage scaling. In the first, this work starts from accurate error analysis and a model based on input sequence dependent delay estimation. Based on the analysis, we explain the dependence of voltage scalability on input image types, which may be used for input dependent adaptive control for optimal accuracy-energy tradeoffs. In addition, this work includes the system-level analysis of the impact of aggressive voltage scaling on overall energy consumption and a low-cost technique to reduce overall energy consumption. Lastly, this research exploits an error concealment technique to improve the efficiency of accuracy-energy tradeoffs. For an image compression system, the technique minimizes the impact of delay errors on output quality while allowing very low voltage operations for significant energy reduction.
|
249 |
Design of a High-Speed CMOS ComparatorShar, Ahmad January 2007 (has links)
<p>This master thesis describes the design of high-speed latched comparator with 6-bit resolution, full scale voltage of 1.6 V and the sampling frequency of 250 MHz. The comparator is designed in a 0.35 9m CMOS process with a supply voltage of 3.3 V.</p><p>The comparator is designed for time-interleaved bandpass sigma-delta ADC.</p><p>Due to the nature of the target application, it should be possible to turn off the components to avoid the static power consumption. The comparator of this design implements the turn off technique when it is not in use. The settling time of the comparator is less than half the clock cycle which means it does not effect the functionality of the bandpass sigma-delta ADC in terms of speed.</p><p>The simulation results are derived using Cadence environment. The results show that the comparator has 6-bit resolution and power consumption of 4.13 mW for the worst-case frequency of 250 MHz. It fulfills all the performance requirements, most of them with large margins.</p>
|
250 |
Implementation and Evaluation of Single Filter Frequency Masking Narrow-Band High-Speed Recursive Digital Filters / Implementering och utvärdering av smalbandiga rekursiva digitala frekvensmaskningsfilter för hög hastighet med identiska subfilterMohsén, Mikael January 2003 (has links)
<p>In this thesis two versions of a single filter frequency masking narrow-band high-speed recursive digital filter structure, proposed in [1], have been implemented and evaluated considering the maximal clock frequency, the maximal sample frequency and the power consumption. The structures were compared to a conventional filter structure, that was also implemented. The aim was to see if the proposed structure had some benefits when implemented and synthesized, not only in theory. For the synthesis standard cells from AMS csx 0.35 mm CMOS technology were used.</p>
|
Page generated in 0.032 seconds