• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 43
  • 11
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 166
  • 38
  • 27
  • 27
  • 26
  • 25
  • 25
  • 21
  • 21
  • 20
  • 18
  • 17
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Desenvolvimento e avaliação de um lubrificante, com partículas magnéticas, destinado à redução de atrito em motores de combustão interna / Development and evaluation of a lubricant, using magnetic particles, in order to reduce friction in internal combustion engines

Oliveira, Adelci Menezes de 14 September 2009 (has links)
Os motores de combustão interna (MCI) têm sido usados pela humanidade há mais de 100 anos e ainda continuarão por muito tempo em virtude da sua alta confiabilidade e baixo custo de produção. No entanto, eles apresentam grande impacto ambiental em relação à emissão de \'CO IND.2\'. Atualmente, diversos trabalhos têm sido realizados com o objetivo de reduzir o consumo de combustíveis, o que conseqüentemente resulta em redução de emissões. Esses trabalhos englobam melhoramentos de projeto, desenvolvimento de novos materiais e lubrificantes de maior desempenho. No presente trabalho desenvolveu-se um lubrificante que contém partículas magnéticas constituídas de Compostos Intermetálicos Lubrificantes (CIL), que foi avaliado em tribômetro do tipo quatro esferas. Este lubrificante foi testado nas temperaturas de 60 ºC, 100 ºC e 150 ºC, sob perfil de carga específico e rotação de 1.500 rpm. Comparado com outro óleo de mesmo grau SAE de viscosidade, apresentou desempenho friccional superior, exceto para a temperatura de 150 ºC. Constatou-se que as partículas de CIL atuavam através da combinação da atividade superficial e atração magnética provocada pelo processo friccional das superfícies. Também se realizou um estudo de simulação computacional, com o objetivo de avaliar os efeitos da presença de CIL sobre o desempenho global de um motor de combustão interna, variando-se as viscosidades dos lubrificantes comparados, dentro do mesmo grau SAE. A conclusão é que um motor operando com o óleo formulado com CIL apresentou melhor desempenho do que quando operava com óleo comercial. Ainda se constatou, teoricamente, que dentro de um mesmo grau de viscosidade, o óleo de viscosidade menor pode oferecer ganhos de potência superiores a um motor que opere com outro óleo de viscosidade maior, com uma boa capacidade de proteção contra o desgaste, em virtude da presença das partículas de CIL. / The internal combustion engines have been used for 100 years and they will continue being used for many years, especially because of high reliability and low costs of production. Nevertheless, they produce a lot of \'CO IND.2\' emissions. Nowadays, worldwide, several projects are being performed in order to save fuels and reduce the emissions and for that, new materials and high performance lubricants are being developed. In this work it was developed a lubricant that contained magnetic particles, called lubricant intermetalic compound (CIL) and it was evaluated in a four ball tribometer, under 60 ºC, 100 ºC and 150 ºC, using a specific load profile and a speed of 1.500 rpm. When the magnetic oil was compared with commercial oil, in the same SAE viscosity grade, it presented a better frictional performance, except for 150 ºC. It was verified that the mechanism of the magnetic lubricant was a combination of particles superficial activity and attraction magnetic obtained by frictional process of the surfaces. Also, it was carried out a computational simulation for an internal combustion engine, in order to compare the performance of the magnetic lubricant with commercial oil, and evaluating the effect of the viscosities. The lubricant prepared with CIL presented a power increase, when compared to commercial oil, and for the same grade viscosity, the lower viscosity oil presented a better performance, besides of offering a good protection against wear.
42

Desenvolvimento e avaliação de um lubrificante, com partículas magnéticas, destinado à redução de atrito em motores de combustão interna / Development and evaluation of a lubricant, using magnetic particles, in order to reduce friction in internal combustion engines

Adelci Menezes de Oliveira 14 September 2009 (has links)
Os motores de combustão interna (MCI) têm sido usados pela humanidade há mais de 100 anos e ainda continuarão por muito tempo em virtude da sua alta confiabilidade e baixo custo de produção. No entanto, eles apresentam grande impacto ambiental em relação à emissão de \'CO IND.2\'. Atualmente, diversos trabalhos têm sido realizados com o objetivo de reduzir o consumo de combustíveis, o que conseqüentemente resulta em redução de emissões. Esses trabalhos englobam melhoramentos de projeto, desenvolvimento de novos materiais e lubrificantes de maior desempenho. No presente trabalho desenvolveu-se um lubrificante que contém partículas magnéticas constituídas de Compostos Intermetálicos Lubrificantes (CIL), que foi avaliado em tribômetro do tipo quatro esferas. Este lubrificante foi testado nas temperaturas de 60 ºC, 100 ºC e 150 ºC, sob perfil de carga específico e rotação de 1.500 rpm. Comparado com outro óleo de mesmo grau SAE de viscosidade, apresentou desempenho friccional superior, exceto para a temperatura de 150 ºC. Constatou-se que as partículas de CIL atuavam através da combinação da atividade superficial e atração magnética provocada pelo processo friccional das superfícies. Também se realizou um estudo de simulação computacional, com o objetivo de avaliar os efeitos da presença de CIL sobre o desempenho global de um motor de combustão interna, variando-se as viscosidades dos lubrificantes comparados, dentro do mesmo grau SAE. A conclusão é que um motor operando com o óleo formulado com CIL apresentou melhor desempenho do que quando operava com óleo comercial. Ainda se constatou, teoricamente, que dentro de um mesmo grau de viscosidade, o óleo de viscosidade menor pode oferecer ganhos de potência superiores a um motor que opere com outro óleo de viscosidade maior, com uma boa capacidade de proteção contra o desgaste, em virtude da presença das partículas de CIL. / The internal combustion engines have been used for 100 years and they will continue being used for many years, especially because of high reliability and low costs of production. Nevertheless, they produce a lot of \'CO IND.2\' emissions. Nowadays, worldwide, several projects are being performed in order to save fuels and reduce the emissions and for that, new materials and high performance lubricants are being developed. In this work it was developed a lubricant that contained magnetic particles, called lubricant intermetalic compound (CIL) and it was evaluated in a four ball tribometer, under 60 ºC, 100 ºC and 150 ºC, using a specific load profile and a speed of 1.500 rpm. When the magnetic oil was compared with commercial oil, in the same SAE viscosity grade, it presented a better frictional performance, except for 150 ºC. It was verified that the mechanism of the magnetic lubricant was a combination of particles superficial activity and attraction magnetic obtained by frictional process of the surfaces. Also, it was carried out a computational simulation for an internal combustion engine, in order to compare the performance of the magnetic lubricant with commercial oil, and evaluating the effect of the viscosities. The lubricant prepared with CIL presented a power increase, when compared to commercial oil, and for the same grade viscosity, the lower viscosity oil presented a better performance, besides of offering a good protection against wear.
43

Hydrophobieverhalten PDMS-basierter Materialien für Hochspannungsanwendungen

Praße, Florian 05 June 2023 (has links)
Polydimethylsiloxan (PDMS)-basierte Materialien finden Verwendung als Schirmmaterial für Verbundisolatoren in der Hochspannungstechnik. Diese Schirmmaterialen benötigen im Außeneinsatz eine herausragende Hydrophobie, um Spannungsüberschläge durch leitfähige Elektrolytfilme zu vermeiden. Im Außeneinsatz widerfährt ein Schirmmaterial unterschiedliche Witterungsbedingungen wie z.B.: Regen oder Betauungsvorgänge. Unter Wirkung hoher elektrischer Felder können dann auf der Oberfläche Tropfenteilentladungen auftreten, die zu einer Hydrophilisierung der Oberfläche führen. Ziel der Arbeit ist es die Materialparameter zu beleuchten, die einen Einfluss auf die Hydrophobiebeständigkeit von Schirmmaterialien besitzen. Kommerziell erhältliche Silikon-Komposite besitzen neben dem eigentlichen Silikonnetzwerk auch Füllstoffe in unbekannter Art und Konzentration, wodurch eine Ursachenfindung für den Hydrophobieverlust erschwert ist. Aus diesem Grund wurde auf eigens synthetisierte Silikonelastomere zurückgegriffen. Diese wurden durch platinkatalysierte Hydrosilylierungsreaktion aus vinylterminierten PDMS (vPDMS) und dem tetrafunktionalem Vernetzer Tetrakis(dimethylsiloxysilan) (TDSS) hergestellt. Durch Variation der Kettenlängen des vPDMS und durch Variation des stöchiometrischen Verhältnisses konnte ein vPDMS-TDSS-Modell-Silikonsystem entwickelt werden, worin Netzwerkparameter (Netzwerkdichte und Sol-Anteil) gezielt justiert werden konnten. Die hergestellten Silikonelastomere wurden anschließend hinsichtlich ihrer Hydrophobie untersucht und im Anschluss gegenüber ihrer Beständigkeit gegenüber Tropfenteilentladungen getestet. Zur Simulation der kombinierten elektrischen und elektrolytischen Beanspruchung wurden dynamische Tropfentests durchgeführt, um die Hydrophobiebeständigkeit zu untersuchen. Im Rahmen der Arbeit wurde festgestellt, dass insbesondere die Steifigkeit der Materialien einen wesentlichen Einfluss auf die Hydrophobiebeständigkeit von Silikonen hat. Zusätzlich beeinflusst die Rauheit eines Materials die Ausfallzeiten im dynamischen Tropfentest maßgeblich. Darüber hinaus führt ein überlagerter Ölfilm auf der strukturierten Oberfläche dazu, dass sich das Abgleitverhalten von Wassertropfen im Laufe der Zeit verändert.
44

The influence of solid additives on the tribological properties of lubricants

Zhao, Chuanli January 2013 (has links)
The present work investigates the tribological properties of solid particles as lubricant additives in lubricants. Two types of solid particles, Ceria nanoparticles (CeO2) and Zinc borate ultrafine powders (ZB UFPs), were used as the lubricant additives in this study. The friction and wear behaviours of these lubricant additives in different base lubricants were identified. With an appropriate application of these solid lubricant additives, the friction reduction and wear resistance properties of the lubricant have been successfully improved. Without assistance of surfactant or surface modification, the two types of solid particles behave very differently. Evident performance was observed that pure ZB UFPs were capable of considerably reducing the friction coefficient of sunflower oil and liquid paraffin when they were used as a lubricant additive without further treatment. On the contrary, CeO2 nanoparticles did not show noticeable contribution to friction reduction when they were used as the only additive in water. Only when surfactant Sorbitan monostearate was employed to enhance the dispersibility of CeO2 nanoparticles in water, the application of this additive was capable of reducing friction coefficient of the water based lubricant effectively. Surface modification of the solid particles was carried out to improve the dispersibility of these particles in base lubricants. Oleic acid (OA) and Hexadecyltrimethoxysilane (HDTMOS) were selected as the modification agents. Modified CeO2 nanoparticles and ZB UFPs revealed outstanding wear resistance property. An improvement of up to 15 times was identified although this improvement on wear resistance, in this case, was often companied by a rise in friction coefficient. Tribo-films generated by tribo-chemical reaction were observed on most of the worn surfaces and the formation of this tribo-film appeared to have played an important role in the friction and wear behaviours of a system. A tenacious tribo-film with good surface coverage was only generated on the worn surface when HDTMOS modified solid particles were used as lubricant additives. The mechanical properties and elemental composition of the tribo-film were studied with nano-indentation and energy-dispersive X-ray spectroscopy (EDS). Finally, based on the experimental evidence, different functionalities of CeO2 nanoparticles and ZB UFPs as solid lubricant additives were recognized.
45

Novel ultrasound-assisted electrodeposited Ni-based coatings for bearing applications

Tudela Montes, I. January 2015 (has links)
The purpose of the present PhD research project was to evaluate the feasibility of the electrodeposition of novel thin Ni composite coatings with lubricant particles from an additive-free Watts bath and their application as diffusion barrier layers in journal bearings for medium-speed diesel engines. Overall, the main objective was to develop thin Ni composite coatings with the following characteristics: • Improved tribological performance. • Good adhesion properties. • Good ‘anti-diffusion’ performance. Ultrasound was used in the preparation of pure Ni coatings and Ni composite coatings with lubricant particles under different conditions in order to understand how ultrasonic cavitation influences electrodeposition and characteristics of said Ni-based coatings. Two main studies were conducted related to this: 1. Study of the effect of ultrasonic power on the electrodeposition of pure Ni coatings to understand the influence of cavitation phenomena near the surface of the cathode on the properties of Ni deposits 2. Study of the effect of ultrasound on the production of Ni composite coatings to understand the influence of ultrasound in the dispersion of particles, the electrodeposition of Ni composite coatings and the properties of said Ni composite coatings. The influence of ultrasound on the dispersion of particles in the Watts bath was evaluated by observing the visual appearance of the resulting dispersions and analysing the particle size distribution of diluted solutions by laser diffraction-based particle sizing methods. The effect of ultrasound on the characteristics of Ni deposits and Ni composite coatings electrodeposited from the additive-free Watts bath was evaluated by different material characterization techniques: Abstract • X-Ray Diffraction (XRD) analysis was employed to observe the orientation of the Ni crystals that formed the coatings. • Field Ion Beam – Scanning Electron Microscopy (FIB-SEM) was employed to analyse the surface morphology and microstructure of the coatings. • Microhardness tests were performed to observe how the modification of the grain structure and the presence of particles may affect the hardness of the coatings. • Glow Discharge – Optical Emission Spectroscopy (GD-OES) was also employed to estimate the particle content in the Ni composite coatings.
46

De-lubrication during sintering of P/M compacts: Operative mechanism and process control strategy

Saha, Deepak 01 October 2004 (has links)
"De-lubrication is the first stage in a sintering operation, where the lubricants (higher weight hydrocarbons) are removed from the parts by controlled heating. Improper de-lubrication leads to defects such as blistering, sooting, micro-porosity etc in a sintered part. Most of these problems arise, as there exists a gap in the present understanding of de-lubrication. The primary motive of this work is to direct research towards the development of sensors and controls and thus, mitigate the various problems due to improper de-lubrication. Currently, there exists a myriad of lubricants being used during the process of compaction. They include metallic based lubricants, polymers and non-metallic lubricants. In this work, research was limited in understanding the de-lubrication of EBS (Ethylene Bisstearimide), as, it the most commonly used lubricant in the industry. It has replaced commonly used lubricant due to cleaner burnouts, absence of metallic residue and, cost effectiveness. The entire work is divided into three phases: • Phase 1: Ascertained the most important parameters that affect the kinetics of de-lubrication. • Phase 2: Investigated the type of gases released during the decomposition of EBS. • Phase 3: Recommended a control strategy. TGA (Thermo-gravimetric analysis) was used in the phase I, the results clearly show that the rate of heating is the most important parameter during de-lubrication. Identification of gases was performed using the FTIR (Fourier transform infrared spectroscopy) and DUV (Deep ultraviolet spectroscopy). This constituted the second phase of our experiments. The primary gases identified in Phase II were carbon dioxide and a hydrocarbon (hepta-decane). Finally, an empirical model for de-lubrication has been proposed in Phase III. The model was verified in an industrial furnace. It has been observed that there exists a very good correlation between the proposed empirical model and the experiments performed in Phase II of this study. This study lays down the following guidelines for the development of future sensors and controls: • The development of future sensors should focus in the detection of CO2 and hepta-decane. • Rate of heating determines how fast or slow the lubricant decomposes and finally escapes form the compacted part. • The empirical model may be used, as a means to determine the time a part should reside in a furnace for complete lubricant burnout at a given heating rate."
47

Desempenho de motor diesel com óleo vegetal de Crambe (Crambe abyssinica hochst) pré-aquecido

Bomfati, Bruna Martins 27 February 2018 (has links)
Submitted by Eunice Novais (enovais@uepg.br) on 2018-05-18T19:33:14Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Bruna Martins Bomfati.pdf: 1871828 bytes, checksum: 025d7196b1adc075dc67eda4558cee36 (MD5) / Made available in DSpace on 2018-05-18T19:33:14Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Bruna Martins Bomfati.pdf: 1871828 bytes, checksum: 025d7196b1adc075dc67eda4558cee36 (MD5) Previous issue date: 2018-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os problemas ambientais decorrentes do uso de combustíveis fósseis têm incentivado o desenvolvimento de fontes renováveis de energia. Neste cenário, em relação à busca por possíveis substitutos ao petrodiesel, os óleos vegetais e seus derivados vêm se revelando a melhor alternativa. Porém, para os óleos vegetais serem utilizados de forma pura como combustível, adaptações devem ser feitas para reduzir sua viscosidade e minimizar a ocorrência de possíveis problemas de desempenho e de danos ao motor. Neste trabalho, foi realizado ensaio de longa duração em motor ciclo Diesel, monocilíndrico e com injeção indireta, utilizando óleo de crambe pré-aquecido a 100 °C como combustível, com o objetivo de avaliar o desempenho do motor alimentado com este óleo vegetal, em comparação ao petrodiesel, assim como observar possíveis contaminações no óleo lubrificante decorrentes da utilização do óleo de crambe. O ensaio teve duração total de 100 horas. Em intervalos de tempo predeterminados, mensurou-se o consumo e a perda de potência relativa para os combustíveis crambe e petrodiesel, e realizou-se retirada de amostra de lubrificante para análise laboratorial, sendo as primeiras avaliações no tempo zero e as subsequentes a cada 15 horas de operação do motor. Também foi calculada a eficiência térmica do conjunto motor-gerador nos dois tratamentos. O consumo de óleo de crambe foi, em média, superior ao de petrodiesel nos quatro regimes de operação do motor, sendo mais evidente a diferença entre os combustíveis nos regimes com carga. A perda de potência relativa do combustível crambe foi superior à do petrodiesel nas avaliações em que se aplicou a carga de 51% da potência nominal do motor sobre a condição de 1.800 rpm de velocidade livre de carga e para a aplicação de carga adicional de 15% sobre a condição de 51% de demanda da potência nominal do motor; porém, para a aplicação de 66% de demanda da potência nominal do motor sobre a condição de 1.800 rpm livre de carga, o combustível crambe apresentou menor perda de potência relativa. Não houve diferença na eficiência térmica do conjunto motor-gerador com os dois combustíveis, comprovando que o maior consumo de óleo de crambe compensa seu menor poder calorífico em relação ao petrodiesel. Nas análises realizadas nas amostras de lubrificante não foram observados indícios de contaminação pelo combustível e nem alterações de suas propriedades, indicando combustão adequada do óleo de crambe, entretanto, observou-se aumento acentuado da concentração de ferro. Em geral, apesar do desempenho inferior, obteve-se bons resultados com o óleo de crambe pré-aquecido como combustível, porém mais estudos são necessários para avaliar a viabilidade técnica e econômica de seu uso. / The environmental problems arising from the use of fossil fuels have encouraged the development of renewable energy sources. In this scenario, in relation to the search for possible substitutes for petrodiesel, fuels made from vegetable oils are considered an interesting alternative. However, to use pure vegetable oils as fuel, adaptations must be made to reduce the oil viscosity and minimize the occurrence of performance issues and engine damage. In this study, a long-term test was performed in a single-cylinder, indirect injection diesel engine fueled with crambe oil preheated at 100 °C, with the aim of evaluating the performance of the engine with the use of this vegetable oil as fuel, in comparison to petrodiesel, and also possible contaminations in the lubricant due to the use of crambe oil. The essay had a duration of 100 hours. At specific time intervals, consumption and relative power loss for crambe oil and petrodiesel were measured, and lubricant samples were taken for laboratory analysis. The initial evaluations were at time zero and the subsequent at each 15 hours of engine operation. Also, the thermal efficiency was calculated for both fuels. The consumption of crambe oil was, on average, higher than that of petrodiesel for the four engine operating regimes, and the difference between the fuels consumptions was more evident at load conditions. The relative power loss of crambe fuel was higher than that of petrodiesel in the evaluations in which the load of 51% of rated engine power was applied over the condition of 1,800 rpm load-free and for the application of additional load of 15% over the demand of 51% of rated engine power; however, for the application of load of 66% of rated engine power over the condition of 1,800 rpm load-free, crambe oil presented less relative power loss. There was no difference between the fuels in the thermal efficiency of the engine-generator set, proving that the higher consumption of crambe oil compensates its lower heating value in relation to petrodiesel. In the lubricant analyses, there was no evidence of contamination by the fuel and no changes in its properties, indicating adequate combustion of the crambe oil, but it was observed a marked increase in iron concentration. In general, despite the inferior performance, good results were obtained with preheated crambe oil as fuel. However, more studies are necessary to evaluate the technical and economic feasibility of its use.
48

Vibrating CPD Chemical Degradation Oil Sensor

Tsiareshka, Siarhei G. 23 May 2006 (has links)
Oil analysis is a broad field comprised of hundreds of individual tests that provide meaningful benefit by assessing one or more properties of lubricants or machines. Many tests are performed on new types of oil during research and development. The lubricants chemical, physical, or lubricating properties are validated for quality control purposes and product performance classification. Much of the research in this area is devoted to the online oil degradation systems which allow getting a prompt response about the condition of lubricant. This thesis investigates the concept for monitoring oil degradation with a vibrating Kelvin probe technique. The Vibrating Kelvin probe method for measuring the work function of metals has been used since 1932. Among the applications of this technique are adsorption, corrosion, friction and other studies. A novel application of this method is proposed in this thesis. The vibrating Kelvin system was created with one static surface acting as a sampling surface and the other one electrically isolated. The interaction of the oil with one of the surfaces of a capacitor results in a signal which is synchronously measured. The oil molecules adsorb on the surface of one of the plates and form a space charge layer which changes the work function of that surface. Oil prepared by intentional oxidation was used to evaluate and to monitor the ability to see changes in oil.
49

Performance Analysis Of Drilling Fluid Liquid Lubricants

Sonmez, Ahmet 01 September 2011 (has links) (PDF)
Excessive torque is one of the most important problems in oil/gas drilling industry. Friction between wellbore/casing and drill string causes excessive torque. This study discusses performance analysis of drilling fluid lubricants, which are used as friction reducers in well-bore. Three different types of commercial chemical lubricants, which are fatty acid and glycerid based, triglycerid and vegetable oil based and polypropylene glycol based, diesel oil, and crude oil, which consists of different API gravity, paraffin and asphaltene value samples, were selected for the analysis. In the analysis, different lubricant compositions with the mixture of commercial chemical lubricants, crude oil and diesel oil, which were added to water based lignosulfonate mud, are tested on metal-metal contact surface by Ofite Lubricity Tester to determine the best lubricity/cost ratio of lubricant compositions. Moreover, effects of the lubricants on mud rheology and API fluid loss of mud, foam forming potential and cheesing/greasing of the lubricants and the influence of mud properties on lubricants (calcium, salt, pH and mud density) are examined.
50

Nonuniform Distribution of Molecularly Thin Lubricant Caused by Inhomogeneous Buried Layers of Discrete Track Media

Fukuzawa, Kenji, 福澤, 健二, Muramatsu, Takuro, Amakawa, Hiroaki, Itoh, Shintaro, Zhang, Hedong 11 1900 (has links)
No description available.

Page generated in 0.0656 seconds