• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Erzeugung sekundärer Exzitonen in festem Xenon untersucht mit Hilfe der Lumineszenzspektroskopie

Steeg, Barbara. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Hamburg.
2

Untersuchungen zur Bildung und Analytik von N-Nitrosaminen in der Atmosphäre von Kokereien /

John, Thomas. January 1995 (has links)
Universiẗat-Gesamthochsch., Diss.--Paderborn, 1995.
3

Entwicklung und Validierung mathematischer Methoden zur Auswertung spektroskopischer Daten der Uranyl(VI)-Hydrolyse

Drobot, Björn 25 October 2016 (has links) (PDF)
Die Verfügbarkeit von Metallen in der Geo- und Biosphäre wird durch deren chemische Form, die Speziation, bestimmt. Zur Analyse der Speziation gibt es eine Vielzahl von Techniken. Für spektroskopische Methoden sind untersuchbare Konzentrationsbereiche unter anderem durch entsprechende Detektionsgrenzen eingeschränkt. Vor allem für niedrige Konzentrationen (< 10 µM), wie sie für viele natürliche Systeme von Bedeutung sind, ist die Lumineszenzspektroskopie ein geeignetes Werkzeug. Die Zerlegung spektroskopischer Daten von komplexen Systemen stellt eine zusätzliche Herausforderung dar. Zur Extraktion spektraler Informationen individueller chemischer Spezies werden moderne mathematische Verfahren verwendet. Die so erhaltene spektroskopische Charakterisierung kann zur strukturellen und thermodynamischen Interpretation genutzt werden. In dieser Arbeit wurde die parallele Faktoranalyse (PARAFAC) zur Auswertung spektroskopischer Datensätze genutzt. Diese Technik wurde hier erstmals auf Uranyl(VI)-Systeme angewendet, wodurch eine umfassende lumineszenzspektroskopische Charakterisierung der Uranyl(VI)-Hydrolyse generiert wurde. Zusätzlich wurde der bestehende PARAFAC-Algorithmus (N-way Toolbox) erweitert. Damit wird die Zerlegung auf chemisch interpretierbare Ergebnisse beschränkt und eine direkte Extraktion thermodynamischer Daten ermöglicht. Für die mononuklearen Hydrolysespezies konnten korrigierte Komplexstabilitätskonstanten vorgeschlagen werden, wodurch entsprechende Speziationsrechnungen belastbarer werden. Die extrahierten spektralen Eigenschaften einzelner Spezies wurden anschließend sorgfältig analysiert. Dazu wurden quantenmechanische sowie semiempirische Ansätze genutzt. Neben einerValidierung der angenommenen Speziesbezeichnung wurde dadurch erstmals eine fundierte lumineszenzspektroskopische Signal-Struktur-Beziehung für die Uranyl(VI)-Hydrolyse generiert. Die entwickelten Algorithmen wurden im Rahmen der Arbeit auf komplexere Systeme des Uranyl(VI) und Europium(III) übertragen und deren Gültigkeit nachgewiesen. So konnten neue Erkenntnisse zur Lumineszenzlöschung des Uranyl(VI)-Ions und der Europium(III)-Hydrolyse gewonnen werden. Zudem wurde eine Strategie zur einfachen und akkuraten Bestimmung der Anzahl von Bindungsstellen am Beispiel des Proteins Calmodulin vorgestellt. Der aufgezeigte breite Anwendungsbereich wird zusätzlich durch die erfolgreiche Übertragung der SpecConst-Erweiterung auf andere spektroskopische Techniken (am Beispiel der UV-vis Spektroskopie) erweitert. Die vorgestellten Werkzeuge verbessern die Auswertung spektroskopischer Daten und erweitern das damit verbundene Verständnis komplexer umweltrelevanter Systeme.
4

Entwicklung und Validierung mathematischer Methoden zur Auswertung spektroskopischer Daten der Uranyl(VI)-Hydrolyse

Drobot, Björn 18 August 2016 (has links)
Die Verfügbarkeit von Metallen in der Geo- und Biosphäre wird durch deren chemische Form, die Speziation, bestimmt. Zur Analyse der Speziation gibt es eine Vielzahl von Techniken. Für spektroskopische Methoden sind untersuchbare Konzentrationsbereiche unter anderem durch entsprechende Detektionsgrenzen eingeschränkt. Vor allem für niedrige Konzentrationen (< 10 µM), wie sie für viele natürliche Systeme von Bedeutung sind, ist die Lumineszenzspektroskopie ein geeignetes Werkzeug. Die Zerlegung spektroskopischer Daten von komplexen Systemen stellt eine zusätzliche Herausforderung dar. Zur Extraktion spektraler Informationen individueller chemischer Spezies werden moderne mathematische Verfahren verwendet. Die so erhaltene spektroskopische Charakterisierung kann zur strukturellen und thermodynamischen Interpretation genutzt werden. In dieser Arbeit wurde die parallele Faktoranalyse (PARAFAC) zur Auswertung spektroskopischer Datensätze genutzt. Diese Technik wurde hier erstmals auf Uranyl(VI)-Systeme angewendet, wodurch eine umfassende lumineszenzspektroskopische Charakterisierung der Uranyl(VI)-Hydrolyse generiert wurde. Zusätzlich wurde der bestehende PARAFAC-Algorithmus (N-way Toolbox) erweitert. Damit wird die Zerlegung auf chemisch interpretierbare Ergebnisse beschränkt und eine direkte Extraktion thermodynamischer Daten ermöglicht. Für die mononuklearen Hydrolysespezies konnten korrigierte Komplexstabilitätskonstanten vorgeschlagen werden, wodurch entsprechende Speziationsrechnungen belastbarer werden. Die extrahierten spektralen Eigenschaften einzelner Spezies wurden anschließend sorgfältig analysiert. Dazu wurden quantenmechanische sowie semiempirische Ansätze genutzt. Neben einerValidierung der angenommenen Speziesbezeichnung wurde dadurch erstmals eine fundierte lumineszenzspektroskopische Signal-Struktur-Beziehung für die Uranyl(VI)-Hydrolyse generiert. Die entwickelten Algorithmen wurden im Rahmen der Arbeit auf komplexere Systeme des Uranyl(VI) und Europium(III) übertragen und deren Gültigkeit nachgewiesen. So konnten neue Erkenntnisse zur Lumineszenzlöschung des Uranyl(VI)-Ions und der Europium(III)-Hydrolyse gewonnen werden. Zudem wurde eine Strategie zur einfachen und akkuraten Bestimmung der Anzahl von Bindungsstellen am Beispiel des Proteins Calmodulin vorgestellt. Der aufgezeigte breite Anwendungsbereich wird zusätzlich durch die erfolgreiche Übertragung der SpecConst-Erweiterung auf andere spektroskopische Techniken (am Beispiel der UV-vis Spektroskopie) erweitert. Die vorgestellten Werkzeuge verbessern die Auswertung spektroskopischer Daten und erweitern das damit verbundene Verständnis komplexer umweltrelevanter Systeme.:Danksagung I Abkürzungen IV 1 Motivation 1 2 Einleitung und Hintergrund 4 2.1 Speziation 4 2.1.1 Hydrolyse 6 2.2 Uran 7 2.2.1 Uranyl(VI) 13 2.3 Optische Spektroskopie 14 2.3.1 Absorptionsspektroskopie 15 2.3.2 Lumineszenz 16 2.3.3 Uranyl(VI)-Lumineszenz 18 3 Material und Methoden 24 3.1 Chemikalien 24 3.2 Komplexbezeichnung 25 3.3 Probenvorbereitung 26 3.4 Absorptionsspektroskopie 27 3.5 Lumineszenzspektroskopie 27 3.5.1 Continuous Wave Spektroskopie 27 3.5.2 Zeitaufgelöste laserinduzierte Fluoreszenzspektroskopie 30 3.6 Datenauswertung - PARAFAC 34 3.7 Extrapolation auf Standardbedingungen 38 4 Ergebnisse und Diskussion 40 4.1 Methodenentwicklung 40 4.1.1 Exponentielle Einschränkung für PARAFAC - ’ExpConst’ 40 4.1.2 Speziationseinschränkung für PARAFAC - ’SpecConst’ 42 4.1.3 Spektrenzerlegung 45 4.2 Validierung der Methoden am Beispiel der Uranyl(VI)-Hydrolyse 51 4.2.1 Hydrolyse von 10−5 M Uranyl(VI) 51 4.2.2 Hydrolyse von 10−8 M Uranyl(VI) 62 4.2.3 Absorptionsspektroskopie der Uranyl(VI)-Hydrolyse 72 4.3 Übertragung der Methoden auf komplexere Uranyl(VI)-Systeme 75 4.3.1 Das Uranyl(VI)-Carbonat-System 75 4.3.2 Das Uranyl(VI)-Halogenid-System 79 4.4 Übertragung der Methoden auf Europium(III)-Systeme 86 4.4.1 Die Europium(III)-Hydrolyse 86 4.4.2 Interaktion von Europium(III) mit Calmodulin 94 5 Zusammenfassung 103 Literaturverzeichnis 106 Abbildungsverzeichnis 131 Tabellenverzeichnis 134 Publikationen im Rahmen dieser Arbeit i Konferenzbeiträge iii Eidesstattliche Erklärung iv Versicherung v
5

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro) / Spectroscopic Investigations on the Complex Formation of Cm(III) and Eu(III) with Organic Model Ligands as well as their Chemical Binding Form in Human Urine (In Vitro)

Heller, Anne 04 August 2011 (has links) (PDF)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen. / In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse. In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids. The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and contribute to a better understanding of the known macroscopic effects of these elements. Furthermore, they are the basis of subsequent in vivo investigations.
6

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)

Heller, Anne 17 June 2011 (has links)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen.:1 Motivation und Zielstellung 2 Speziationsbestimmung exogener Schwermetalle in Biofluiden 2.1 Actinide und Lanthanide 2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen 2.3 Speziationsbestimmung von Metallen 3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden 3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser 3.2 Harnstoff – Hauptbestandteil des menschlichen Urins 3.3 Citronensäure – ubiquitäres Biomolekül0 3.4 Aminosäuren – Grundbausteine des Lebens 4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben 4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben 4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin 4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5 Diskussion 5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III) 5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5.3 Ausblick 6 Experimentelles / In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse. In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids. The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and contribute to a better understanding of the known macroscopic effects of these elements. Furthermore, they are the basis of subsequent in vivo investigations.:1 Motivation und Zielstellung 2 Speziationsbestimmung exogener Schwermetalle in Biofluiden 2.1 Actinide und Lanthanide 2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen 2.3 Speziationsbestimmung von Metallen 3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden 3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser 3.2 Harnstoff – Hauptbestandteil des menschlichen Urins 3.3 Citronensäure – ubiquitäres Biomolekül0 3.4 Aminosäuren – Grundbausteine des Lebens 4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben 4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben 4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin 4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5 Diskussion 5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III) 5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5.3 Ausblick 6 Experimentelles

Page generated in 0.0518 seconds