• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Methods to Identify Thermophysical Properties of Complex Media / Développement de méthodes pour la caractérisation de propriétés thermophysiques de matériaux à structure complexe

El Rassy, Elissa 24 October 2019 (has links)
Les matériaux à structures complexes (anisotropes, multicouches et hétérogènes comme poreux) sont de plus en plus utilisés dans de nombreuses applications (ex. automobile,aéronautique, industrie chimique, génie civil et biomédical), notamment en raison de leur amélioration des propriétés mécaniques et physiques. L’identification des propriétés thermophysiques de ces matériaux devient un enjeu incontournable dans plusieurs applications afin de prédire correctement l’évolution de la température au sein de ces structures et d’assurer le contrôle et la modélisation des transferts de chaleur au cours des processus. Dans ce contexte,l’identification des propriétés thermophysiques de tels matériaux, suscitent depuis de nombreuses années une préoccupation importante et croissante. La principale caractéristique de cette thèse concerne la mise en œuvre d’une méthode d’identification directe et simultanée des diffusivités thermiques de matériaux monocouches ou multicouches à l’aide d’un modèle3D transitoire analytique et d’une expérience unique et non intrusive. La méthode proposée est d’abord validée sur un matériau monocouche opaque et isotrope, puis appliquée et vérifiée sur un matériau orthotrope. La méthode d’identification est basée sur l’expérience bien connue de la méthode flash, qui utilise l’évolution de la température sur la face avant ou arrière de l’échantillon, enregistrée via une caméra infrarouge, pour identifier les paramètres inconnus. Compte tenu de la complexité et de la non-linéarité du problème inverse, un algorithme d’optimisation hybride couplant un algorithme stochastique (Optimisation par essaims particulaires) et un déterministe (de type gradient), a été choisi. L’estimation repose sur la minimisation de l’écart entre les mesures et la réponse d’un modèle semi-analytique inspiré de l’approche des quadripôles thermiques qui prédit l’évolution de la température sur la face avant ou la face arrière. L’excitation thermique, générée par un laser CO2, est représentée par un flux de chaleur localisé imposé qui peut être de type Dirac ou créneau. Les estimations sont comparées aux valeurs trouvées dans la littérature et aux résultats obtenus en utilisant d’autres méthodes bien établies. Enfin, quelques améliorations de la méthode sont étudiées, en termes de temps de calcul et de précision, avec une optimisation des conditions expérimentales241RÉSUMÉ(durée et intensité des créneaux, face de mesure. . . ). La méthode est ensuite généralisée aux matériaux multicouches, puis appliquée expérimentalement à un matériau bicouche. Cette stratégie, qui peut être considérée comme une tâche difficile, est motivée par l’impossibilité,dans certains cas, de séparer les 2 couches, en particulier pour les revêtements déposés sur des substrats, qui sera la dernière application investiguée dans ce travail. Une analyse de sensibilité est souvent effectuée afin de tester la faisabilité de l’estimation et de la comparaison,pour les matériaux à deux couches et multicouches, de plusieurs configurations possibles en termes de faces d’excitation/de mesures. La pré-évaluation des méthodes d’identification et les études paramétriques sont effectuées à l’aide de données synthétiques bruitées et obtenues à l’aide du modèle ou d’un code numérique d’éléments finis (pseudo-expérience) afin de vérifier la faisabilité et la robustesse des approches. L’une des caractéristiques les plus distinctes de cette approche est que l’estimation peut être réalisée, et avec succès, sans aucune connaissance préalable de la forme ou de l’intensité de l’excitation. En effet, outre l’estimation simultanée des diffusivités thermiques, la méthode peut prédire la quantité de chaleur absorbée parle matériau ainsi que la distribution spatiale de l’excitation thermique. / Advanced materials with complex structures (anisotropic, multilayers and heterogeneous like porous) are increasingly used in many applications, (e.g. automotive, aeronautics, chemical industry, civil and biomedical engineering) due to their advantages, in terms of mechanical and physical properties enhancements. Estimating thermophysical properties of such materials becomes a crucial issue in several applications in order to correctly predict temperature evolution inside these structures and to ensure the control and the modelling of heat transfers through the processes. In this context, the identification of such materials thermophysical properties, has taken from many years, a significant and increasing concern. The main feature of this thesis relies on the devolvement of a direct and simultaneous identification method of the thermal diffusivities of monolayer or multilayer materials using an analytical 3D transient model and a unique and non-intrusive experiment. The proposed method is firstly validated on an isotropic opaque monolayermaterial, then applied and verified on an orthotropic one. The identificationmethod is based on the well-known flash-method experiment whose temperature evolution on the front or rear face on the sample, recorded via an IR camera, is used to identify the unknown parameters. Considering the complexity, and the non-linearity of the inverse problem, a hybrid optimization algorithm combining a stochastic algorithm (Particles Swarm Optimization) and a deterministic one (gradient based), has been chosen. This minimization procedure is applied to fit the observation to the output of a pseudo- analytical model inspired from the thermal quadrupoles approach that predicts the temperature evolution on the front or rear face. The thermal excitation, generated by a CO2 laser, is mimicked by an imposed localized heat flux that may be of Dirac or pulse type. The estimations are compared with values from literature and results obtain from well-established methods. Finally, some improvement of the method are investigated, in terms of time consumption and accuracy, with an optimization of the experiment design (pulse time and intensity, measurement face). The method is then generalised to multi-layer materials, then applied experimentally to a two-layer material. This strategy, which can be considered as a challenging task, is motivated by the impossibility, in some cases, to separate the 2 layers, especially for coatings deposited on substrates which is the last application investigated in this work. A sensitivity analysis is often conducted in order to test the feasibility of the estimation and compare, for two-layer and multilayers materials, several possible configurations in terms of excitation/measurements faces. Pre-evaluation of the overall identification methods and parametric studies are performed using synthetic noisy data generated using the model or a numerical finite element code(pseudo-experiment) to verify the approaches feasibility and robustness. One of the most distinctive features of our approach is that the estimation may be successfully achieved without any a priori knowledge about the shape or the intensity of the excitation. Indeed, besides the simultaneous estimation of the thermal diffusivities, the method predicts the total amount of heat absorbed by the material as well as the space shape of the thermal excitation.
2

Caractérisation des propriétés thermiques de liquides semi-transparents à haute température : application aux liquides silicatés / Characterization of the thermal properties of semi-transparent liquids at high temperature : Application to molten silicates

Meulemans, Johann 20 July 2018 (has links)
Le sujet de l'étude concerne la caractérisation des propriétés thermiques de liquides semi-transparents à haute température : les liquides silicatés. La caractérisation de ces matériaux est particulièrement délicate car il faut séparer les contributions des différents modes de transfert thermique (conduction, convection et rayonnement) si l'on veut mesurer des propriétés intrinsèques. Le dispositif expérimental est basé sur une méthode pulsée de type flash. La cellule de mesure, placée au centre d'un four tubulaire, est soumise à une excitation délivrée par un laser continu et l'élévation de température est mesurée à l'aide d'un détecteur infrarouge sur la face opposée à l'excitation. La modélisation du problème direct prend en compte le couplage conducto-radiatif en résolvant l'équation de la chaleur en régime transitoire et l'équation de transfert radiatif (ETR) pour un milieu gris émettant, absorbant et non diffusant à l'aide de la méthode des harmoniques sphériques (approximation P1). La méthode développée permet d'estimer simultanément la diffusivité thermique et un coefficient d'absorption moyen (gris) par méthode inverse. Les résultats expérimentaux obtenus sur des liquides silicatés présentant des propriétés radiatives différentes (i.e., des coefficients d'absorption différents) valident la méthode de caractérisation développée et mise en œuvre dans nos travaux / The study deals with the characterization of the thermal properties of semi-transparent liquids at high temperature: molten silicates. The characterization of such materials is particularly challenging because the contributions of the different heat transfer modes (conduction, convection and radiation) should be accounted for to allow the measurement of intrinsic properties. The experimental setup is based on a transient pulse method derived from the flash method. A heat flux stimulation is generated on the front face of an experimental cell, placed at the center of a tube furnace, with a continuous laser beam and the temperature rise is measured by an infrared detector on the opposite side. The modeling of the direct problem takes into account the conducto-radiative coupling by solving both the heat equation and the radiative transfer equation (RTE) for a gray emitting, absorbing but non-scattering medium with the spherical harmonics method (P1 approximation). The developed method allows to simultaneously estimate the thermal diffusivity and a mean (gray) absorption coefficient by an inverse method. The experimental results obtained on molten silicates with different radiative properties (i.e., different absorption coefficients) validate the characterization method developed and implemented in our work
3

Caractérisation thermique de matériaux anisotropes à hautes températures / Thermal characterization of anisotropic materials at high temperatures

Souhar, Youssef 20 May 2011 (has links)
Le sujet de l'étude concerne la caractérisation thermique à hautes températures de matériaux anisotropes dont la diffusivité thermique varie selon la direction considérée. Cette mesure de la diffusivité est permise par l'observation des variations transitoires de température d'un matériau soumis à un flux de chaleur de type impulsionnel. L’excitation provient d’un Laser et la mesure de température est réalisée par thermographie infrarouge sur la face opposée à l'excitation thermique. Le champ de température ainsi obtenu permet de déterminer les trois diffusivités du matériau selon ses directions d'anisotropie. En effet, grâce à des transformations intégrales du champ de température, il est possible d'obtenir un modèle théorique décrivant les variations de température au sein du matériau. Les estimations des diffusivités s'obtiennent alors par la minimisation de la somme des écarts quadratiques entre les modèles théoriques et leurs équivalents expérimentaux. Il s'agit de problèmes d'optimisation non linéaire et les estimations sont réalisées dans le domaine des fréquences spatiales et dans le temps grâce à une inversion numérique de Laplace. Basée sur des dispositifs optiques, cette méthode est non intrusive et grâce aux modèles analytiques les mesures sont rapides et précises même à haute température. La méthode ainsi que le nouveau banc expérimental mis en place rendent possible la mesure des trois diffusivités en une unique expérience pour des excitations de forme quelconque en espace et non nécessairement Dirac en temps / The study concerns the thermal characterization at high temperatures of anisotropic materials whose thermal diffusivity varies according to the direction considered. This measurement of diffusivity is allowed by the observation of the transient variations of temperature of a material subjected to a heat pulse source. The excitation is performed by a Laser and the temperature measurement is carried out by infrared thermography on the opposite face of the thermal excitation. The temperature field thus obtained makes it possible to determine the three diffusivities of the material according to its directions of anisotropy. Indeed, thanks to integral transforms of the temperature field, it is possible to obtain a theoretical model describing the temperature variations within the material. The estimates of diffusivities are then obtained by the minimization of the sum of squared residuals between the theoretical models and their experimental equivalents. These are problems of nonlinear optimization and the estimations are carried out in the spatial frequency domain and in time thanks to a numerical inversion of Laplace. Based on optical devices this method is non-intrusive and thanks to the use of analytical models the estimations are fast and accurate even at high temperatures. The method and the new experimental facility make it possible to estimate the three thermal diffusivities in a single experiment and this for excitations of any shape in space and not necessarily Dirac’s delta function in time
4

Modélisation du transfert thermique au sein de matériaux poreux multiconstituants

Niezgoda, Mathieu 11 December 2012 (has links) (PDF)
Le CEA travaille sur des matériaux poreux - alvéolaires, composites, céramiques, etc. - et cherche à optimiser leurs propriétés pour des utilisations spécifiques. Ces matériaux, souvent composés de plusieurs constituants, ont en général une structure complexe avec une taille de pores de quelques dizaines de microns. Ils sont mis en oeuvre dans des systèmes de grande échelle, supérieure à leurs propres échelles caractéristiques, dans lesquels on les considère comme équivalents à des milieux homogènes, sans prendre en compte sa microstructure locale, pour simuler leur comportement dans leur environnement d'utilisation.Nous nous intéressons donc à la caractérisation des propriétés thermiques effectives de matériaux à microstructure hétérogène en cherchant à déterminer par méthode inverse en fonction de la température la diffusivité thermique qu'ils auraient s'ils étaient homogènes.L'identification de la diffusivité de matériaux poreux et/ou semi-transparents est rendue difficile par le couplage conducto-radiatif fort qui peut se développer rapidement dans ces milieux avec une augmentation de la température. Nous avons donc modélisé le transfert de chaleur couplé conducto-radiatif en fonction de la température au sein de matériaux poreux multiconstituants à partir de leur microstructure numérisée en voxels. Notre démarche consiste à nous appuyer sur la microstructure 3D obtenue par tomographie. Ces microstructures servent de support numérique à cette modélisation qui permet d'une part de simuler tout type d'expériences thermiques numériques - en particulier la méthode flash dont les résultats nous permettent de déduire la diffusivité thermique -, et d'autre part de reproduire le comportement thermique de ces échantillons dans leur condition d'utilisation.
5

Modélisation du transfert thermique au sein de matériaux poreux multiconstituants / Modeling of heat transfer within porous multiconstituent materials

Niezgoda, Mathieu 11 December 2012 (has links)
Le CEA travaille sur des matériaux poreux – alvéolaires, composites, céramiques, etc. – et cherche à optimiser leurs propriétés pour des utilisations spécifiques. Ces matériaux, souvent composés de plusieurs constituants, ont en général une structure complexe avec une taille de pores de quelques dizaines de microns. Ils sont mis en oeuvre dans des systèmes de grande échelle, supérieure à leurs propres échelles caractéristiques, dans lesquels on les considère comme équivalents à des milieux homogènes, sans prendre en compte sa microstructure locale, pour simuler leur comportement dans leur environnement d’utilisation.Nous nous intéressons donc à la caractérisation des propriétés thermiques effectives de matériaux à microstructure hétérogène en cherchant à déterminer par méthode inverse en fonction de la température la diffusivité thermique qu’ils auraient s’ils étaient homogènes.L’identification de la diffusivité de matériaux poreux et/ou semi-transparents est rendue difficile par le couplage conducto-radiatif fort qui peut se développer rapidement dans ces milieux avec une augmentation de la température. Nous avons donc modélisé le transfert de chaleur couplé conducto-radiatif en fonction de la température au sein de matériaux poreux multiconstituants à partir de leur microstructure numérisée en voxels. Notre démarche consiste à nous appuyer sur la microstructure 3D obtenue par tomographie. Ces microstructures servent de support numérique à cette modélisation qui permet d’une part de simuler tout type d’expériences thermiques numériques – en particulier la méthode flash dont les résultats nous permettent de déduire la diffusivité thermique –, et d’autre part de reproduire le comportement thermique de ces échantillons dans leur condition d’utilisation. / The CEA works a great deal with porous materials – carbon composites, ceramics – and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous.The identification of the diffusivity of porous and/or semitransparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multiconstituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions.
6

Etude de champs de température séparables avec une double décomposition en valeurs singulières : quelques applications à la caractérisation des propriétés thermophysiques des matérieux et au contrôle non destructif / Study of separable temperatur fields with a double singular value decomposition : some applications in characterization of thermophysical properties of materials and non destructive testing

Ayvazyan, Vigen 14 December 2012 (has links)
La thermographie infrarouge est une méthode largement employée pour la caractérisation des propriétés thermophysiques des matériaux. L’avènement des diodes laser pratiques, peu onéreuses et aux multiples caractéristiques, étendent les possibilités métrologiques des caméras infrarouges et mettent à disposition un ensemble de nouveaux outils puissants pour la caractérisation thermique et le contrôle non desturctif. Cependant, un lot de nouvelles difficultés doit être surmonté, comme le traitement d’une grande quantité de données bruitées et la faible sensibilité de ces données aux paramètres recherchés. Cela oblige de revisiter les méthodes de traitement du signal existantes, d’adopter de nouveaux outils mathématiques sophistiqués pour la compression de données et le traitement d’informations pertinentes. Les nouvelles stratégies consistent à utiliser des transformations orthogonales du signal comme outils de compression préalable de données, de réduction et maîtrise du bruit de mesure. L’analyse de sensibilité, basée sur l’étude locale des corrélations entre les dérivées partielles du signal expérimental, complète ces nouvelles approches. L'analogie avec la théorie dans l'espace de Fourier a permis d'apporter de nouveaux éléments de réponse pour mieux cerner la «physique» des approches modales.La réponse au point source impulsionnel a été revisitée de manière numérique et expérimentale. En utilisant la séparabilité des champs de température nous avons proposé une nouvelle méthode d'inversion basée sur une double décomposition en valeurs singulières du signal expérimental. Cette méthode par rapport aux précédentes, permet de tenir compte de la diffusion bi ou tridimensionnelle et offre ainsi une meilleure exploitation du contenu spatial des images infrarouges. Des exemples numériques et expérimentaux nous ont permis de valider dans une première approche cette nouvelle méthode d'estimation pour la caractérisation de diffusivités thermiques longitudinales. Des applications dans le domaine du contrôle non destructif des matériaux sont également proposées. Une ancienne problématique qui consiste à retrouver les champs de température initiaux à partir de données bruitées a été abordée sous un nouveau jour. La nécessité de connaitre les diffusivités thermiques du matériau orthotrope et la prise en compte des transferts souvent tridimensionnels sont complexes à gérer. L'application de la double décomposition en valeurs singulières a permis d'obtenir des résultats intéressants compte tenu de la simplicité de la méthode. En effet, les méthodes modales sont basées sur des approches statistiques de traitement d'une grande quantité de données, censément plus robustes quant au bruit de mesure, comme cela a pu être observé. / Infrared thermography is a widely used method for characterization of thermophysical properties of materials. The advent of the laser diodes, which are handy, inexpensive, with a broad spectrum of characteristics, extend metrological possibilities of infrared cameras and provide a combination of new powerful tools for thermal characterization and non destructive evaluation. However, this new dynamic has also brought numerous difficulties that must be overcome, such as high volume noisy data processing and low sensitivity to estimated parameters of such data. This requires revisiting the existing methods of signal processing, adopting new sophisticated mathematical tools for data compression and processing of relevant information.New strategies consist in using orthogonal transforms of the signal as a prior data compression tools, which allow noise reduction and control over it. Correlation analysis, based on the local cerrelation study between partial derivatives of the experimental signal, completes these new strategies. A theoretical analogy in Fourier space has been performed in order to better understand the «physical» meaning of modal approaches.The response to the instantaneous point source of heat, has been revisited both numerically and experimentally. By using separable temperature fields, a new inversion technique based on a double singular value decomposition of experimental signal has been introduced. In comparison with previous methods, it takes into account two or three-dimensional heat diffusion and therefore offers a better exploitation of the spatial content of infrared images. Numerical and experimental examples have allowed us to validate in the first approach our new estimation method of longitudinal thermal diffusivities. Non destructive testing applications based on the new technique have also been introduced.An old issue, which consists in determining the initial temperature field from noisy data, has been approached in a new light. The necessity to know the thermal diffusivities of an orthotropic medium and the need to take into account often three-dimensional heat transfer, are complicated issues. The implementation of the double singular value decomposition allowed us to achieve interesting results according to its ease of use. Indeed, modal approaches are statistical methods based on high volume data processing, supposedly robust as to the measurement noise.

Page generated in 0.0354 seconds