Spelling suggestions: "subject:"métododos dde agrupamento"" "subject:"métododos dee agrupamento""
1 |
Abordagem híbrida para representação de forma e textura baseada em dados simbólicosALMEIDA, Carlos Wilson Dantas de 13 March 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T18:31:53Z
No. of bitstreams: 2
Tese Carlos Dantas.pdf: 9442070 bytes, checksum: 23ec0df3aeec907b3058315538fe9c19 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T18:31:53Z (GMT). No. of bitstreams: 2
Tese Carlos Dantas.pdf: 9442070 bytes, checksum: 23ec0df3aeec907b3058315538fe9c19 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013-03-13 / CNPq / A análise de dados simbólicos (Symbolic Data Analysis) é uma nova abordagem
na área de descoberta automática de conhecimento que visa desenvolver
métodos para dados descritos por variáveis onde existem conjuntos de categorias,
intervalos ou distribuições de probabilidade nas células das tabelas de dados.
Os dados clássicos passam a ser agregados a fim de representar variáveis mais
complexas como intervalos reais, conjuntos de categorias, histogramas, distribuições
de probabilidade, entre outras. Esta tese introduz um novo algoritmo
de agrupamento denominado Fuzzy Kohonen Clustering Network para dados
simbólicos do tipo intervalo. São apresentadas duas versões do algoritmo. Na
primeira versão, é introduzido o algoritmo clássico utilizando a abordagem da
análise de dados simbólicos. Na segunda versão, é introduzido o cálculo de pesos
para cada classe e para cada atributo da classe como principal alteração do
algoritmo original. Um outro ponto abordado se refere ao desenvolvimento de
novos descritores de imagens. Nos últimos anos, o uso de documentos e imagens
digitais vêm tomando um espaço cada vez maior na sociedade. Em resposta a
esses desafios, iremos investigar uma nova estratégia, desenvolvendo descritores
de forma e textura junto com os algoritmos de agrupamento. Estes descritores
são desenvolvidos nesta tese como uma abordagem baseada em dados simbólicos
de tipo intervalo.
|
2 |
Divergência genética em acessos de amendoim com base em descritores fenotípicosRamos, Jean Pierre Cordeiro 12 February 2015 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-03-09T14:02:43Z
No. of bitstreams: 1
PDF - Jean Pierre Cordeiro Ramos.pdf: 743229 bytes, checksum: e79f51445e4907b6849b1bc46cf35e46 (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T21:01:15Z (GMT) No. of bitstreams: 1
PDF - Jean Pierre Cordeiro Ramos.pdf: 743229 bytes, checksum: e79f51445e4907b6849b1bc46cf35e46 (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T21:01:24Z (GMT) No. of bitstreams: 1
PDF - Jean Pierre Cordeiro Ramos.pdf: 743229 bytes, checksum: e79f51445e4907b6849b1bc46cf35e46 (MD5) / Made available in DSpace on 2016-07-21T21:01:24Z (GMT). No. of bitstreams: 1
PDF - Jean Pierre Cordeiro Ramos.pdf: 743229 bytes, checksum: e79f51445e4907b6849b1bc46cf35e46 (MD5)
Previous issue date: 2015-02-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The peanut breeding programs are based on introducing or disponibilization of genetic
variability by crossing, with further selection of lines showing robust descriptors as to
agronomical, nutritional and physiological aspects. The multivariate analysis methodologies
have been often used to estimating the inter-relationship between genotypes, based in several
descriptors in order to indicate group of promising materials for further use in breeding
programs. The objective of this study was to estimate the genetic diversity among peanut
genotypes based on three clustering methodology, in order to selecting parents for oil and
food markets. A germplasm collection containing 77 genotypes of peanut (var. fastigiata and
vulgaris) was planted in field, using plots consisted of 5m-rows, in a spacing 0.7 m X 0.2 m.
The following variables were evaluated: height of main stem, total dry weight of plant, weight
of pods/plant, seed weight/plant, number of pods/ plant, number of seeds/pod, weight of 100
pods, weight of 100 seeds, percent of oil in seeds, pod length, harvest index, hairiness, color
of the main stem, growth habit, color seed, color of leaves, inflorescence on the main stem,
early flowering and Full maturation of pods. Three clustering methods were selected for
divergence analysis: Tocher, UPGMA and principal components.. It was found that the three
methodologies, when used together, were consistent in group establishing, revealing
interesting combinations for further use in breeding programs, aiming generation of drought
tolerant lines and indicated to food market. / Os programas de melhoramento do amendoim se baseiam na introdução ou disponibilização
de variabilidade genética, seguidos de seleção de linhagens que apresentem descritores
responsivos pelo desempenho das plantas nos aspectos nutricionais, fisiológicos e
agronômicos. Técnicas de análise multivariada têm sido frequentemente utilizadas para
estimar as interrelações entre genótipos, baseando-se em vários descritores com intuito de
indicar quais genótipos são mais promissores para serem inseridos em programas de
melhoramento. Objetivou-se, com este trabalho, proceder a uma análise da diversidade
genética entre genótipos de amendoim baseando-se em diferentes métodos de agrupamento,
visando seleção de genitores para os mercados de óleo e alimento. Foram utilizados 77
genótipos na fase de pré-melhoramento de amendoim da subespécie fastigiata, contendo as
variedades fastigiata e vulgaris, da coleção de amendoim da Embrapa Algodão. A unidade
experimental foi constituída por uma fileira de 5 m contendo 50 plantas, num espaçamento
0,7 m X 0,2 m. Foram avaliadas as seguintes variáveis: peso das vagens/planta, peso das
sementes/planta, número de vagens/planta, número de sementes/vagem, peso de 100 vagens,
peso de 100 sementes, teor de óleo nas sementes, comprimento da vagem, índice de colheita,
peso seco total da planta, altura da haste principal, pilosidade, cor da haste principal, hábito de
crescimento, cor das sementes, cor dos folíolos, inflorescência na haste principal, início da
floração e Maturação completa da vagem. Três métodos de agrupamentos foram selecionados
para analise da divergência: Tocher, UPGMA e componentes principais. As três metodologias
usadas, em conjunto, mostraram-se concordantes na formação dos grupos estabelecidos,
revelando combinações interessantes para serem usadas em programas de melhoramento
visando obtenção de linhagens com tolerância ao ambiente semiárido e com padrão de
sementes voltados para o mercado de alimentos.
|
3 |
Método adaptativo de Markov Chain Monte Carlo para manipulação de modelos BayesianosFIRMINO, Paulo Renato Alves 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T17:35:07Z (GMT). No. of bitstreams: 2
arquivo3632_1.pdf: 1762777 bytes, checksum: e94374ad230aa9afab9b590aa9caa2bd (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2009 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Ao longo dos anos, modelos Bayesianos vêm recebendo atenção especial da academia e
em aplicações principalmente por possibilitarem uma combinação matemática entre corpos de
evidência subjetiva e empírica. A metodologia de integração de Monte Carlo via cadeias de
Markov é uma das principais classes de algoritmos para computar estimativas marginais a
partir de modelos Bayesianos. Entre os métodos de integração de Monte Carlo via cadeias de
Markov, o algoritmo de Metropolis-Hastings merece destaque. Em resumo, para o conjunto de
d variáveis (ou componentes) do modelo Bayesiano, X = (X1, X2, , Xd), tal algoritmo elabora
uma cadeia de Markov onde cada estado visitado é uma realização de X, x = (x1, x2, , xd),
amostrada das distribuições de probabilidades condicionais das variáveis do modelo, f(xi| x1,
x2, , xi-1, xi+1, , xd). Quando a simulação é governada por distribuições cuja amostragem
direta é viável, o algoritmo de Metropolis-Hastings converge para o método de Gibbs e
técnicas de redução de variância tais como Rao-Blackwellization podem ser adotadas. Caso
contrário, diante de distribuições cuja amostragem direta é inviável, Rao-Blackwellization é
possível a partir do método de griddy-Gibbs, que recorre a funções aproximadas. Esta tese
propõe uma variante de griddy-Gibbs que pode ser também classificada como uma extensão
do algoritmo de Metropolis-Hastings (diferentemente do método de griddy-Gibbs tradicional
que descarta a possibilidade de se rejeitar os valores amostrados ao longo das simulações).
Além disso, algoritmos de integração numérica adaptativos e técnicas de agrupamento, tais
como o método adaptativo de Simpson e centroidal Voronoi tessellations, são adotados. Casos
de estudo apontam o algoritmo proposto como uma boa alternativa a métodos existentes,
promovendo estimativas mais precisas sob um menor consumo de recursos computacionais
em muitas situações
|
4 |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias / Management zones definition using the clustering algorithm fuzzy c-means with associated varied distance metricsFontana, Fabiane Sorbar 19 July 2017 (has links)
Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-06-15T20:19:22Z
No. of bitstreams: 2
Fabiane_Fontana2018.pdf: 2677532 bytes, checksum: 3036328537227cc96b8ea368e893f2fc (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-06-15T20:19:22Z (GMT). No. of bitstreams: 2
Fabiane_Fontana2018.pdf: 2677532 bytes, checksum: 3036328537227cc96b8ea368e893f2fc (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Precision Agriculture (AP) uses technologies aimed at increasing productivity and reducing environmental impact through localized application of agricultural inputs. In order to make AP economically feasible, it is essential to improve current methodologies, as well as to propose new ones, such as the design of management areas (MZs) from productivity data, topographic, and soil attributes, among others, to determine which are heterogeneous subareas among themselves in the same area. In this context, the main objective of this research was to evaluate three distance metrics (Diagonal, Euclidian, and Mahalanobis) through FUZME and SDUM software (for the definition of management units) using the fuzzy c-means algorithm, and, at a further moment, to evaluate the cultures of soybeans and corn, as well as the association between them. On the first scientific paper, using data corresponding to four distinct areas, the three metrics with original and normalized data associated with soybean yield were evaluated. For area A, the Diagonal and Mahalanobis distances exempted the need for normalization of the variables, presenting areas that were identical for both versions. After the normalization of the data, the Euclidian distance presented a better delineation in its MZs for area A. For areas B, C, and D it was not possible to reach conclusions regarding the best performance, since only one variable was used for the process of MZs, and that has directly influenced the results. On the second scientific paper, data corresponding to three distinct areas were applied to analyze the use of soybean and corn yields, as well as the association between them, in the selection of variables to define MZs. Based on the variables available for each of the areas, the selection was carried out using the spatial correlation method, considering, for each one of the areas, the three target yields (soybean, corn, and soybean+corn). The type of productivity used demonstrated two different outcomes: first in the variable selection process, where its alternation resulted in different selections for the same area, and second, in the evaluation of the defined MZs, where even when the same variables were selected in the definition of the MZs, the performances of the MZs were different. After the validation methods applied, it was verified that the best target yield was soybean+corn, reasserting the idea of being better to use these two cultures, together, when defining the MZs of an area with rotating crops of soybean and corn. / A Agricultura de Precisão (AP) utiliza tecnologias objetivando o aumento da produtividade e redução do impacto ambiental por meio de aplicação localizada de insumos agrícolas. Para viabilizar economicamente a AP, é essencial aprimorar as metodologias atuais, bem como propor novas, como, por exemplo, o delineamento de zonas de manejo (ZMs) a partir de dados de produtividade, atributos topográficos e do solo, entre outros, utilizados a fim de determinar subáreas heterogêneas entre si em uma mesma área. Neste contexto, este trabalho teve como principal objetivo avaliar três métricas de distâncias (Diagonal, Euclidiana e Mahalanobis) junto aos Softwares FUZME e SDUM (Software para a definição de unidades de manejo), que utilizam o algoritmo fuzzy c-means, e, em um segundo momento, avaliar também as culturas de soja e milho, assim como a associação entre elas. No primeiro artigo, utilizando dados correspondentes a quatro áreas distintas, avaliaram-se as três métricas com dados originais e normalizados associados à produtividade de soja. Para a área A, as distâncias Diagonal e Mahalanobis dispensaram a necessidade de normalização das variáveis, apresentando áreas idênticas para as duas versões. Após a normalização dos dados, a distância Euclidiana apresentou um melhor delineamento em suas ZMs para a área A. Para as áreas B, C e D não foi possível obter conclusões quanto ao melhor desempenho, visto que o fato de ser utilizado apenas uma variável para o processo de definição de ZMs influenciou diretamente nos resultados obtidos. No segundo artigo, dados correspondentes a três áreas distintas foram utilizados para analisar o uso de produtividades de soja e milho, assim como a associação entre elas, na seleção de variáveis para definição de ZMs. A partir das variáveis disponíveis para cada uma das áreas foi realizada a seleção destas através do método da correlação espacial, levando em consideração, para cada uma das áreas, as três produtividades-alvo (soja, milho e soja+milho). O tipo de produtividade utilizada repercutiu de duas formas diferentes: primeiro no processo de seleção de variáveis, onde a sua alternância resultou em seleções diferenciadas para uma mesma área; e em um segundo momento, na avaliação das ZMs definidas, onde mesmo quando as mesmas variáveis foram selecionadas na definição das ZMs, os desempenhos das ZMs foram diferentes. Após os métodos de validação aplicados, verificou-se que a melhor produtividade-alvo foi soja+milho, reforçando a ideia de ser útil a utilização destas duas culturas, em conjunto, na definição das ZMs de uma área com alternância de produção de soja e milho.
|
5 |
Modelos de mistura para dados com distribuições Poisson truncadas no zero / Mixture models for data with zero truncated Poisson distributionsGigante, Andressa do Carmo 22 September 2017 (has links)
Modelo de mistura de distribuições tem sido utilizado desde longa data, mas ganhou maior atenção recentemente devido ao desenvolvimento de métodos de estimação mais eficientes. Nesta dissertação, o modelo de mistura foi utilizado como uma forma de agrupar ou segmentar dados para as distribuições Poisson e Poisson truncada no zero. Para solucionar o problema do truncamento foram estudadas duas abordagens. Na primeira, foi considerado o truncamento em cada componente da mistura, ou seja, a distribuição Poisson truncada no zero. E, alternativamente, o truncamento na resultante do modelo de mistura utilizando a distribuição Poisson usual. As estimativas dos parâmetros de interesse do modelo de mistura foram calculadas via metodologia de máxima verossimilhança, sendo necessária a utilização de um método iterativo. Dado isso, implementamos o algoritmo EM para estimar os parâmetros do modelo de mistura para as duas abordagens em estudo. Para analisar a performance dos algoritmos construídos elaboramos um estudo de simulação em que apresentaram estimativas próximas dos verdadeiros valores dos parâmetros de interesse. Aplicamos os algoritmos à uma base de dados real de uma determinada loja eletrônica e para determinar a escolha do melhor modelo utilizamos os critérios de seleção de modelos AIC e BIC. O truncamento no zero indica afetar mais a metodologia na qual aplicamos o truncamento em cada componente da mistura, tornando algumas estimativas para a distribuição Poisson truncada no zero com viés forte. Ao passo que, na abordagem em que empregamos o truncamento no zero diretamente no modelo as estimativas apontaram menor viés. / Mixture models has been used since long but just recently attracted more attention for the estimations methods development more efficient. In this dissertation, we consider the mixture model like a method for clustering or segmentation data with the Poisson and Poisson zero truncated distributions. About the zero truncation problem we have two emplacements. The first, consider the zero truncation in the mixture component, that is, we used the Poisson zero truncated distribution. And, alternatively, we do the zero truncation in the mixture model applying the usual Poisson. We estimated parameters of interest for the mixture model through maximum likelihood estimation method in which we need an iterative method. In this way, we implemented the EM algorithm for the estimation of interested parameters. We apply the algorithm in one real data base about one determined electronic store and towards determine the better model we use the criterion selection AIC and BIC. The zero truncation appear affect more the method which we truncated in the component mixture, return some estimates with strong bias. In the other hand, when we truncated the zero directly in the model the estimates pointed less bias.
|
6 |
Classificação de anomalias e redução de falsos positivos em sistemas de detecção de intrusão baseados em rede utilizando métodos de agrupamento / Anomalies classification and false positives reduction in network intrusion detection systems using clustering methodsFerreira, Vinícius Oliveira [UNESP] 27 April 2016 (has links)
Submitted by VINÍCIUS OLIVEIRA FERREIRA null (viniciusoliveira@acmesecurity.org) on 2016-05-18T20:29:41Z
No. of bitstreams: 1
Dissertação-mestrado-vinicius-oliveira-biblioteca-final.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-05-20T16:27:30Z (GMT) No. of bitstreams: 1
ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Made available in DSpace on 2016-05-20T16:27:30Z (GMT). No. of bitstreams: 1
ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5)
Previous issue date: 2016-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os Sistemas de Detecção de Intrusão baseados em rede (NIDS) são tradicionalmente divididos em dois tipos de acordo com os métodos de detecção que empregam, a saber: (i) detecção por abuso e (ii) detecção por anomalia. Aqueles que funcionam a partir da detecção de anomalias têm como principal vantagem a capacidade de detectar novos ataques, no entanto, é possível elencar algumas dificuldades com o uso desta metodologia. Na detecção por anomalia, a análise das anomalias detectadas pode se tornar dispendiosa, uma vez que estas geralmente não apresentam informações claras sobre os eventos maliciosos que representam; ainda, NIDSs que se utilizam desta metodologia sofrem com a detecção de altas taxas de falsos positivos. Neste contexto, este trabalho apresenta um modelo para a classificação automatizada das anomalias detectadas por um NIDS. O principal objetivo é a classificação das anomalias detectadas em classes conhecidas de ataques. Com essa classificação pretende-se, além da clara identificação das anomalias, a identificação dos falsos positivos detectados erroneamente pelos NIDSs. Portanto, ao abordar os principais problemas envolvendo a detecção por anomalias, espera-se equipar os analistas de segurança com melhores recursos para suas análises. / Network Intrusion Detection Systems (NIDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. The main advantage in anomaly detection is its ability to detect new attacks. However, this methodology has some downsides. In anomaly detection, the analysis of the detected anomalies is expensive, since they often have no clear information about the malicious events they represent; also, it suffers with high amounts of false positives
detected. In this context, this work presents a model for automated classification of anomalies detected by an anomaly based NIDS. Our main goal is the classification of the detected anomalies in well-known classes of attacks. By these means, we intend the clear identification of anomalies as well as the identification of false positives erroneously detected by NIDSs. Therefore, by addressing the key issues surrounding anomaly based
detection, our main goal is to equip security analysts with best resources for their analyses.
|
7 |
Modelos de mistura para dados com distribuições Poisson truncadas no zero / Mixture models for data with zero truncated Poisson distributionsAndressa do Carmo Gigante 22 September 2017 (has links)
Modelo de mistura de distribuições tem sido utilizado desde longa data, mas ganhou maior atenção recentemente devido ao desenvolvimento de métodos de estimação mais eficientes. Nesta dissertação, o modelo de mistura foi utilizado como uma forma de agrupar ou segmentar dados para as distribuições Poisson e Poisson truncada no zero. Para solucionar o problema do truncamento foram estudadas duas abordagens. Na primeira, foi considerado o truncamento em cada componente da mistura, ou seja, a distribuição Poisson truncada no zero. E, alternativamente, o truncamento na resultante do modelo de mistura utilizando a distribuição Poisson usual. As estimativas dos parâmetros de interesse do modelo de mistura foram calculadas via metodologia de máxima verossimilhança, sendo necessária a utilização de um método iterativo. Dado isso, implementamos o algoritmo EM para estimar os parâmetros do modelo de mistura para as duas abordagens em estudo. Para analisar a performance dos algoritmos construídos elaboramos um estudo de simulação em que apresentaram estimativas próximas dos verdadeiros valores dos parâmetros de interesse. Aplicamos os algoritmos à uma base de dados real de uma determinada loja eletrônica e para determinar a escolha do melhor modelo utilizamos os critérios de seleção de modelos AIC e BIC. O truncamento no zero indica afetar mais a metodologia na qual aplicamos o truncamento em cada componente da mistura, tornando algumas estimativas para a distribuição Poisson truncada no zero com viés forte. Ao passo que, na abordagem em que empregamos o truncamento no zero diretamente no modelo as estimativas apontaram menor viés. / Mixture models has been used since long but just recently attracted more attention for the estimations methods development more efficient. In this dissertation, we consider the mixture model like a method for clustering or segmentation data with the Poisson and Poisson zero truncated distributions. About the zero truncation problem we have two emplacements. The first, consider the zero truncation in the mixture component, that is, we used the Poisson zero truncated distribution. And, alternatively, we do the zero truncation in the mixture model applying the usual Poisson. We estimated parameters of interest for the mixture model through maximum likelihood estimation method in which we need an iterative method. In this way, we implemented the EM algorithm for the estimation of interested parameters. We apply the algorithm in one real data base about one determined electronic store and towards determine the better model we use the criterion selection AIC and BIC. The zero truncation appear affect more the method which we truncated in the component mixture, return some estimates with strong bias. In the other hand, when we truncated the zero directly in the model the estimates pointed less bias.
|
8 |
Aplicação de máquinas de vetores de suporte na identificação de perfis de alunos de acordo com características da teoria das inteligências múltiplas / Implementation of support vector machines for students’profiles identification according to characteristics of multiple intelligencesLázaro, Diego Henrique Emygdio [UNESP] 31 May 2016 (has links)
Submitted by DIEGO HENRIQUE EMYGDIO LÁZARO null (diegoemygdio@gmail.com) on 2016-06-27T15:28:11Z
No. of bitstreams: 1
Aplicação de Máquinas de Vetores de Suporte na Identificação de Perfis de Alunos de acordo com Características da Teoria das Inteligências Múltiplas.pdf: 2758329 bytes, checksum: 02e2c2154153f7f78fdc32629f761d03 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo:
O arquivo submetido não contém o certificado de aprovação.
A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação.
Corrija esta informação e realize uma nova submissão contendo o arquivo correto.
Agradecemos a compreensão. on 2016-06-27T17:22:37Z (GMT) / Submitted by DIEGO HENRIQUE EMYGDIO LÁZARO null (diegoemygdio@gmail.com) on 2016-06-27T20:26:31Z
No. of bitstreams: 1
Aplicação de Máquinas de Vetores de Suporte na Identificação de Perfis de Alunos de acordo com as Características das Inteligências Múltiplas.pdf: 2980004 bytes, checksum: d8b55bde9f111d6df2e3cc9a8db5e8e9 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo:
O arquivo submetido está sem a ficha catalográfica.
A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação.
Corrija esta informação e realize uma nova submissão contendo o arquivo correto.
Agradecemos a compreensão. on 2016-06-28T18:22:33Z (GMT) / Submitted by DIEGO HENRIQUE EMYGDIO LÁZARO null (diegoemygdio@gmail.com) on 2016-06-28T19:33:55Z
No. of bitstreams: 1
Aplicação de Máquinas de Vetores de Suporte na Identificação de Perfis de Alunos de acordo com Características da Teoria das Inteligências Múltiplas.pdf: 2736602 bytes, checksum: 51b12df288fa6ceb2ba0e0a908303beb (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-06-28T19:59:20Z (GMT) No. of bitstreams: 1
lazaro_dhe_me_sjrp.pdf: 2736602 bytes, checksum: 51b12df288fa6ceb2ba0e0a908303beb (MD5) / Made available in DSpace on 2016-06-28T19:59:20Z (GMT). No. of bitstreams: 1
lazaro_dhe_me_sjrp.pdf: 2736602 bytes, checksum: 51b12df288fa6ceb2ba0e0a908303beb (MD5)
Previous issue date: 2016-05-31 / Nesta dissertação foi desenvolvido um mecanismo de classificação capaz de identificar o perfil de um aluno de acordo com características da teoria das inteligências múltiplas, baseado em Support Vector Machines (SVMs, sigla em inglês para Máquinas de Vetores de Suporte), métodos de agrupamento e balanceamento de classes. O objetivo dessa classificação consiste em permitir que os tutores responsáveis por gerar o material para aulas em ferramentas de apoio ao ensino à distância possam utilizar este método de classificação para direcionar o conteúdo ao aluno de forma a explorar sua inteligência múltipla predominante. Para realização dos experimentos, duas SVMs foram criadas, utilizando o método de classificação baseado em k problemas binários, que reduzem o problema de múltiplas classes a um conjunto de problemas binários. Os resultados obtidos durante as fases de treino e teste das SVMs foram apresentados em percentuais por meio de um algoritmo de agrupamento particionado. Esses percentuais ajudam a interpretar a classificação do perfil de acordo com as inteligências predominantes. Além disso, com o uso de métodos de balanceamento de classes, obteve-se melhora no desempenho do classificador, assim, aumentando a eficácia do mecanismo, pois, suas taxas de incorreções foram baixas. / In this work, it was developed a mechanism in order to classify students’ profiles according to the Theory of Multiple Intelligences, based on Support Vector Machines (SVMs), cluster methods and classes balancing. By using these classifications, tutors, who prepare materials for classes in specific tools for distance education purposes, are able to suggest contents for students so that they are able to explore their predominant multiple intelligence. To perform these experiments, SVMs were created by using classification methods based on binary problems that reduce multiple classes problems into a set of binary problems. The results generated during the training and the SVM test stages were presented in percentages by using partitioning clustering algorithm. These percentages are helpful for analysis of profiles classifications according to multiple intelligences. Besides that, by using classes balancing methods, it was possible to obtain improvements on the classifier performance and, consequently, the mechanism efficiency was increased as well, considering the fact that inaccuracy rates were low.
|
9 |
Possibilidades em inteligência artificial na detecção de padrões e previsão de acidentes em rodovias / Possibilities in artificial intelligence in the detection of patterns and prediction of accidents on highwaysChuerubim, Maria Ligia 08 March 2019 (has links)
Nesta tese é apresentada uma investigação de possibilidades em Inteligência Artificial na detecção de padrões e previsão de acidentes em rodovias. Para tanto, é realizada uma avaliação de diferentes técnicas de Aprendizado de Máquina baseadas em abordagens de agrupamento, classificação e predição de links, com base em dados de acidentes georreferenciados e modelados em estruturas de clustering, árvores (CART) e redes (redes neurais artificiais, redes bayesianas e redes complexas). Os resultados revelaram que as abordagens baseadas em redes complexas possibilitaram a detecção de estruturas de agrupamentos mais robustas, quando comparadas as técnicas tradicionais de clustering, uma vez que consideram na estrutura topológica dos dados conceitos de vizinhança. O agrupamento dos dados proporciona a redução da heterogeneidade das bases de dados, bem como a obtenção de regras de decisão (CART) com maior probabilidade de ocorrência e taxa geral de acerto. A classificação supervisionada da severidade dos acidentes em redes, utilizando as modelagens de redes neurais artificiais e redes bayesianas, permitiu identificar simultaneamente os fatores contribuintes a ocorrência dos acidentes, sejam estes associados ao motorista, as variáveis de infraestrutura viária ou as condições do ambiente. No entanto, por considerar o peso das variáveis utilizadas no processo de modelagem, a classificação por redes bayesianas tende a ser mais realista, sendo menos sensível ao overfitting. Quanto à predição dos acidentes, foi possível pela predição de links utilizando a abordagem de redes complexas bipartidas, identificar alta correlação entre os acidentes preditos e os acidentes observados para uma determinada época. A abordagem proposta é flexível ao número de variáveis necessárias ao processo de modelagem, o que permite a realização de um diversificado número de estudos. No entanto, quando se considera a modelagem simplificada, formada pelas variáveis recomendadas pelo Highway Safety Manual (HSM), da Association of State Highway na Transportation (AASHTO), verifica-se que a predição é mais precisa e acurada, uma vez que esta modelagem considera fundamentalmente variáveis de infraestrutura viária, enquanto que na modelagem geral são consideradas também variáveis ambientais, que são mais variantes no tempo e no espaço. Até o presente momento, o método proposto é o mais adequado para explicar o comportamento e aspectos dinâmicos em ambientes rodoviários. No entanto, a abordagem proposta foi limitada pela quantidade de dados explorados, bem como por anomalias decorrentes a processos de execução de obras no trecho da rodovia em análise. Ademais, pode ser aplicada em problemas de diferentes escalas e para diversos estudos de caso. Portanto, por meio da modelagem de redes bipartidas georreferenciadas é possível não apenas realizar a predição de acidentes em rodovias, como também verificar a variação da acidentalidade viária e os níveis de segurança e desempenho de uma rodovia. / This thesis presents an investigation of Possibilities in Artificial Intelligence in the detection of patterns and prediction of accidents on highways. For this, it is performed an evaluation of different machine learning techniques based on grouping, classification and prediction of links, based on data from georeferenced accidents and modeled on clustering structures, trees (CART) and networks (artificial neural network, Bayesian network and complex network). The results revealed that the approaches based on complex networks enabled the detection of structures of groupings more robust, when comparing traditional clustering techniques, when they consider in the structure topological data neighborhood concepts. The grouping of data provides the reduction of heterogeneity of the database, as well as obtaining decision rules (CART) with the higher probability of occurrence and general rate of hit. The classification supervised of the severity of accidents in networks, using the modelling of artificial neural networks and Bayesian networks, it allowed to simultaneously identify the factors contributing to the occurrence of accidents, whether these are associated with the driver, the road infrastructure variables or the environmental conditions. However, considering the weight of the variables used in the modeling process, the classification by Bayesian networks tends to be more realistic, being less sensitive too overftting. Regarding the prediction of accidents, it was possible to predict links using the approach of complex bipartite networks, to identify high correlation between predicted accidents and accidents observed for a certain time. The proposed approach is flexible to the number of variables necessary for the modeling process, which allows the realization of a diversified number of studies. However, when you consider the \"simplified modelling\", formed by the variables recommended by the Highway Safety Manual (HSM), of the Association of State Highway na Transportation (AASHTO), it is verified that the prediction is more accurate and precise, since this modelling considers fundamentally variables of road infrastructure, while that the \"general modelling\" are considered the also environmental variables, which are more variants in time and space. Up to the present moment, the proposed method is best suited to explain the behavior and dynamic aspects in the environment road. However, the proposed approach was limited by the amount of data explored, as well as by anomalies resulting from processes of execution of works in the stretch of the highway under analysis. Moreover, it can be applied to problems of different scales and for several case studies. Therefore, through the modeling of geo-referenced bipartite networks, it is possible not only to predict accidents on highways, but also to check he variation of road accidents and the safety and performance levels of a highway.
|
Page generated in 0.0739 seconds