1 |
In Vitro Simulation of Microgravity Induced Muscle Loss Successfully Increases Expression of Key In Vivo Atrophy MarkersHarding, Charles P. 01 May 2019 (has links)
Muscle loss from lack of activity is a serious issue for immobilized patients on Earth and in human spaceflight, where the low gravity environment prevents normal muscle activity. Simulating muscle loss in cultured cells is an important step in understanding how this condition occurs. This work evaluates different means of simulating muscle loss and selects the one that most closely mimics the cellular responses seen in animals and humans.
To simulate the microgravity environment of spaceflight, mouse skeletal muscle cells were grown in a rotary cell culture system (RCCS). Growing the cells within a natural gelled substrate was compared against growing them on the surface of small plastic beads. Changes after culture under simulated microgravity were characterized by assessing proteins and genes known to change during muscle loss. The structure of the cells was also evaluated by microscopy.
The mouse skeletal muscle cells grown on plastic beads in the RCCS had significant changes in multiple key genes associated with muscle loss and demonstrated physical characteristics expected of mature tissue in live animals. This model is a valuable platform for exploring muscle loss mechanisms and testing new drugs.
|
2 |
Einfluss des Myostatin/AKT/FOXO-Signalwegs auf die Regulation der E3-Ligasen MAFbx und MuRF1 bei ischämischer und dilatativer KardiomyopathieLea, Hildebrandt 10 September 2024 (has links)
Die Herzinsuffizienz ist aufgrund ihrer weltweit ansteigenden Prävalenz und den damit einhergehenden beträchtlichen Kosten im stationären sowie ambulanten Sektor von großer Relevanz für die globalen Gesundheitssysteme. Trotz multipler Möglichkeiten der pharmakologischen und chirurgischen Therapie ist die Mortalität weiterhin hoch. Die Etablierung neuer medikamentöser Behandlungsansätze ist daher von enormer Bedeutung und bedarf der Erweiterung des Verständnisses der pathophysiologischen Grundlagen der Erkrankung. Kardiomyopathien zählen zu den häufigsten Ursachen der Herzinsuffizienz. Dysfunktionen des Ubiquitin-Proteasom-Systems (UPS) wurden bereits in der Progression der Herzinsuffizienz bei Kardiomyopathien diskutiert und setzten einen potentiellen Fokus auf die E3-Ligasen. Diese Hypothese aufgreifend hatte die vorliegende Arbeit das Ziel, erstmalig den kompletten Myostatin/AKT/forkhead box protein (FOXO)-Signalweg und dessen Auswirkungen auf die E3-Ligasen muscle atrophy F-box gene (MAFbx) und muscle ring-finger protein-1 (MuRF1) im fortgeschrittenen humanen Kardiomyopathie-Stadium zu charakterisieren und mögliche neue Ansatzpunkte für die pharmakologische Therapie verschiedener Formen der Kardiomyopathie zu ermitteln.
Zu diesem Zweck wurden Myokardproben von 26 Patienten mit ischämischer Kardiomyopathie (ICM), 23 Patienten mit dilatativer Kardiomyopathie (DCM) und 17 Kontrollpatienten molekularbiologisch, proteinbiochemisch und immunhistochemisch analysiert, um Veränderungen der Komponenten der Myostatin/AKT/FOXO-Signalkaskade und der E3-Ligasen MAFbx und MuRF1 zu identifizieren. Aus diesen Untersuchungen resultierten umfangreiche Alterationen des Signalwegs vor allem in DCM-Patienten. In dieser Gruppe war die Gen- und Proteinexpression der E3-Ligase MAFbx und des Transkriptionsfaktors FOXO1 gegenüber der Kontrollgruppe verringert. Weiterhin zeigte sich eine Reduktion von AKT auf der Genexpressionsebene und von Myostatin auf der Proteinebene in der DCM-Gruppe. Die ICM-Patienten wiesen mit Reduktionen der Genexpression von AKT und MAFbx sowie einem verringerten Anteil MuRF1-positiver Zellen in den immunhistochemischen Analysen nur geringe Unterschiede gegenüber der Kontrollgruppe auf.
Die limitierten Veränderungen des Myostatin/AKT/FOXO-Signalwegs und der E3-Ligasen MAFbx und MuRF1 in ICM-Patienten lassen auf eine eher begrenzte Relevanz der Signalkaskade in der Pathophysiologie dieser Erkrankung schließen. Im Kontrast dazu stehen die detektierten Alterationen der analysierten Zielmoleküle in der DCM-Gruppe. Diese Divergenzen zeigen Unterschiede in der Pathogenese von ICM und DCM auf der Ebene des UPS. Daher unterstützt diese Arbeit die Hypothese, dass eine Therapieoptimierung dieser beiden Kardiomyopathien durch pharmakologische Adressierung verschiedener molekularer Ansatzpunkte erreicht werden könnte.
In dieser Arbeit konnte die simultane Reduktion von MAFbx und FOXO1 in DCM-Patienten gezeigt werden. Durch die Validierung dieser synergistischen Regulation könnte FOXO1 einen potentiellen Angriffspunkt neuer medikamentöser Therapien der DCM darstellen. Unklar bleibt, ob die beobachtete Reduktion von MAFbx Ausdruck eines kardialen Schutzmechanismus oder der Progression des pathologischen Remodelings ist. Daher müssen weiterführende Studien klären, ob die E3-Ligase MAFbx über die therapeutische Beeinflussung des Transkriptionsfaktors FOXO1 herauf- oder herabreguliert werden sollte.
Die Ergebnisse der vorliegenden Arbeit geben zudem einen Hinweis darauf, dass die Regulation von FOXO1 und MAFbx in DCM-Patienten nicht allein von Myostatin und AKT abhängig ist. Die Betrachtung weiterer Einflussfaktoren von MAFbx und FOXO1 in humanem Herzmuskelgewebe könnte somit ebenfalls Gegenstand zukünftiger Forschungsvorhaben sein. / Disturbances in the ubiquitin proteasome system, and especially changes of the E3 ligases, are subjects of interest when searching for causes and therapies for cardiomyopathies. The aim of this study was to clarify whether the myostatin/AKT/forkhead box O (FOXO) pathway, which regulates the expression of the E3 ligases muscle atrophy F-box gene (MAFbx) and muscle ring-finger protein-1 (MuRF1), is changed in dilated cardiomyopathy of ischemic origin (IDCM) and dilated cardiomyopathy of non-ischemic origin (NIDCM). The mRNA and protein expression of myostatin, AKT, FOXO1, FOXO3, MAFbx and MuRF1 were quantified by real-time polymerase chain reaction and ELISA, respectively, in myocardial tissue from 26 IDCM and 23 NIDCM patients. Septal tissue from 17 patients undergoing Morrow resection served as a control. MAFbx and FOXO1 mRNA and protein expression (all p < 0.05), AKT mRNA (p < 0.01) and myostatin protein expression (p = 0.02) were decreased in NIDCM patients compared to the control group. Apart from decreases of AKT and MAFbx mRNA expression (both p < 0.01), no significant differences were detected in IDCM patients compared to the control group. Our results demonstrate that the myostatin/AKT/FOXO pathway is altered in NIDCM but not in IDCM patients. FOXO1 seems to be an important drug target for regulating the expression of MAFbx in NIDCM patients.
|
3 |
Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und HerzmuskelKoerner, Tobias 25 January 2011 (has links) (PDF)
Es ist bekannt, dass eine diabetische Stoffwechsellage über einen gesteigerten Proteinabbau zu einer Muskelatrophie führen kann. Ein zentrales System beim Abbau von Muskelproteinen ist hierbei das Ubiquitin-Proteasom-System mit seinen zwei spezifischen E3-Ligasen MuRF-1 und MAFbx.
Ziel dieser Arbeit war es, den Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und Herzmuskel zeit- und konzentrationsabhängig zu untersuchen. Insbesondere stand die Expression der E3-Ligasen MuRF-1 und MAFbx sowie die daraus folgende Auswirkung auf die Protein-Ubiquitinylierung im Fokus der Untersuchungen. Weiterhin sollte der Einfluss der Hyperglykämie auf die Apoptoserate von Skelett- und Herzmuskelzellen analysiert werden. Seit Kurzem stehen die GLP-1-Analoga als neue Antidiabetika für die Therapie des Diabetes mellitus Type II zur Verfügung. Da in Studien bereits positive Effekte der GLP-1-Analoga am Herzmuskel festgestellt wurden, sollte in der vorliegenden Studie geprüft werden, ob das GLP-1-Analogon Liraglutid die Veränderungen am Herzmuskel beeinflussen kann.
Um die Fragestellungen zu klären, wurden verschiedene Untersuchungen in der Zellkultur durchgeführt. Skelettmuskel Myoblasten (undifferenzierte C2C12-Zellen), Skelettmuskel Myotuben (differenzierte C2C12-Zellen) und neonatale Rattenkardiomyozyten wurden unterschiedlichen Glukosekonzentrationen (5mM, 12mM, 25mM) für 24 oder 72 Stunden ausgesetzt. Die Herzmuskelzellen wurden zusätzlich in den Glukosekonzentrationen unter Zusatz von 12 mg/ml Liraglutid für 72h inkubiert.
Die Expression der E3-Ligasen wurde mit qRT-PCR (MuRF-1 und MAFbx) und Western Blot (MuRF-1) quantifiziert. Die Poly-Ubiquitinylierung wurde mittels Western Blot bestimmt. Unter Verwendung des Cell Death Detection ELISA (Roche Diagnostics) wurde die Apoptoserate evaluiert.
Die Inkubation von Skelett- und Herzmuskelzellen für 24 h mit hyperglykämischen Medium hatte kaum einen Einfluss auf die Expression von MuRF-1 und MAFbx sowie die Apoptoserate. Bei einer Inkubationszeit von 72 h konnten signifikante Erhöhungen bei 25mM Glukose für MuRF-1, MAFbx, der Poly-Ubiquitinylierung und der Apoptoserate in Skelett und Herzmuskelzellen festgestellt werden. Diese Anstiege konnten durch den Zusatz von Liraglutid beim Herzmuskel verhindert werden.
Die Ergebnisse der vorliegenden Studie konnten zeigen, dass eine Hyperglykämie in der Zellkultur nach 72 h die Expression von zwei wichtigen Ubiquitin-E3-Ligasen sowie die Steigerung der Apoptoserate induzieren kann und dass dies durch Liraglutid am Herzmuskel verhindert werden kann. Diese Vorgänge können eventuell den Proteinverlust bzw. die Muskelatrophie beim Diabetes mellitus zum Teil erklären. Durch die positive Beeinflussung von Liraglutid an den Herzmuskelzellen könnte sich hier ein therapeutisches Potential zur Muskelatrophiebehandlung ergeben.
|
4 |
Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und HerzmuskelKoerner, Tobias 01 December 2010 (has links)
Es ist bekannt, dass eine diabetische Stoffwechsellage über einen gesteigerten Proteinabbau zu einer Muskelatrophie führen kann. Ein zentrales System beim Abbau von Muskelproteinen ist hierbei das Ubiquitin-Proteasom-System mit seinen zwei spezifischen E3-Ligasen MuRF-1 und MAFbx.
Ziel dieser Arbeit war es, den Einfluss einer Hyperglykämie auf die Expression von Proteinen des Ubiquitin-Proteasom-Systems im Skelett- und Herzmuskel zeit- und konzentrationsabhängig zu untersuchen. Insbesondere stand die Expression der E3-Ligasen MuRF-1 und MAFbx sowie die daraus folgende Auswirkung auf die Protein-Ubiquitinylierung im Fokus der Untersuchungen. Weiterhin sollte der Einfluss der Hyperglykämie auf die Apoptoserate von Skelett- und Herzmuskelzellen analysiert werden. Seit Kurzem stehen die GLP-1-Analoga als neue Antidiabetika für die Therapie des Diabetes mellitus Type II zur Verfügung. Da in Studien bereits positive Effekte der GLP-1-Analoga am Herzmuskel festgestellt wurden, sollte in der vorliegenden Studie geprüft werden, ob das GLP-1-Analogon Liraglutid die Veränderungen am Herzmuskel beeinflussen kann.
Um die Fragestellungen zu klären, wurden verschiedene Untersuchungen in der Zellkultur durchgeführt. Skelettmuskel Myoblasten (undifferenzierte C2C12-Zellen), Skelettmuskel Myotuben (differenzierte C2C12-Zellen) und neonatale Rattenkardiomyozyten wurden unterschiedlichen Glukosekonzentrationen (5mM, 12mM, 25mM) für 24 oder 72 Stunden ausgesetzt. Die Herzmuskelzellen wurden zusätzlich in den Glukosekonzentrationen unter Zusatz von 12 mg/ml Liraglutid für 72h inkubiert.
Die Expression der E3-Ligasen wurde mit qRT-PCR (MuRF-1 und MAFbx) und Western Blot (MuRF-1) quantifiziert. Die Poly-Ubiquitinylierung wurde mittels Western Blot bestimmt. Unter Verwendung des Cell Death Detection ELISA (Roche Diagnostics) wurde die Apoptoserate evaluiert.
Die Inkubation von Skelett- und Herzmuskelzellen für 24 h mit hyperglykämischen Medium hatte kaum einen Einfluss auf die Expression von MuRF-1 und MAFbx sowie die Apoptoserate. Bei einer Inkubationszeit von 72 h konnten signifikante Erhöhungen bei 25mM Glukose für MuRF-1, MAFbx, der Poly-Ubiquitinylierung und der Apoptoserate in Skelett und Herzmuskelzellen festgestellt werden. Diese Anstiege konnten durch den Zusatz von Liraglutid beim Herzmuskel verhindert werden.
Die Ergebnisse der vorliegenden Studie konnten zeigen, dass eine Hyperglykämie in der Zellkultur nach 72 h die Expression von zwei wichtigen Ubiquitin-E3-Ligasen sowie die Steigerung der Apoptoserate induzieren kann und dass dies durch Liraglutid am Herzmuskel verhindert werden kann. Diese Vorgänge können eventuell den Proteinverlust bzw. die Muskelatrophie beim Diabetes mellitus zum Teil erklären. Durch die positive Beeinflussung von Liraglutid an den Herzmuskelzellen könnte sich hier ein therapeutisches Potential zur Muskelatrophiebehandlung ergeben.
|
5 |
The Role of Muscle and Nerve in Spinal Muscular AtrophyIyer, Chitra C. 07 June 2016 (has links)
No description available.
|
Page generated in 0.0236 seconds