• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 113
  • 32
  • 31
  • 15
  • 13
  • 8
  • 7
  • 7
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 604
  • 604
  • 213
  • 118
  • 101
  • 99
  • 97
  • 82
  • 78
  • 65
  • 62
  • 61
  • 55
  • 53
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Selection Bias in the NBA Draft

Perry, Christopher Mattison January 2008 (has links)
Thesis advisor: Christopher Maxwell / In this paper I present an econometric analysis of selection bias in the NBA Draft from 1995-2003. Employing an interval regression maximum likelihood control model that predicts the eventual value of players based on their Draft position, I pinpoint which groups of players consistently over-perform or under-perform relative to their Draft position. Using this analysis I detect bias pertaining to four different groups of players. There was a bias against high school players, especially those taken in the lottery (the top of the first round of the Draft), which may point to risk-averse tendencies of NBA teams. There was also a bias in favor of centers taken in the lottery, who were consistently drafted too high. Black players were selected too low in the first round, and too high in the second round. The final effect deals with foreign entrants to the Draft. From 1995-2001 foreigners were drafted too low; in 2002 and 2003, when more foreigners were selected, they were drafted too high. My paper details the nature of these biases and analyzes their potential causes. / Thesis (BA) — Boston College, 2008. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Economics. / Discipline: Economics Honors Program. / Discipline: College Honors Program.
82

Seleção de modelos para segmentação de sequências simbólicas usando máxima verossimilhança penalizada / A model selection criterion for the segmentation of symbolic sequences using penalized maximum likelihood

Castro, Bruno Monte de 20 February 2013 (has links)
O problema de segmentação de sequências tem o objetivo de particionar uma sequência ou um conjunto delas em um número finito de segmentos distintos tão homogêneos quanto possível. Neste trabalho consideramos o problema de segmentação de um conjunto de sequências aleatórias, com valores em um alfabeto $\\mathcal$ finito, em um número finito de blocos independentes. Supomos ainda que temos $m$ sequências independentes de tamanho $n$, construídas pela concatenação de $s$ segmentos de comprimento $l^{*}_j$, sendo que cada bloco é obtido a partir da distribuição $\\p _j$ em $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Além disso denotamos os verdadeiros pontos de corte pelo vetor ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, com $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, esses pontos representam a mudança de segmento. Propomos usar o critério da máxima verossimilhança penalizada para inferir simultaneamente o número de pontos de corte e a posição de cada um desses pontos. Também apresentamos um algoritmo para segmentação de sequências e realizamos algumas simulações para mostrar seu funcionamento e sua velocidade de convergência. Nosso principal resultado é a demonstração da consistência forte do estimador dos pontos de corte quando o $m$ tende ao infinito. / The sequence segmentation problem aims to partition a sequence or a set of sequences into a finite number of segments as homogeneous as possible. In this work we consider the problem of segmenting a set of random sequences with values in a finite alphabet $\\mathcal$ into a finite number of independent blocks. We suppose also that we have $m$ independent sequences of length $n$, constructed by the concatenation of $s$ segments of length $l^{*}_j$ and each block is obtained from the distribution $\\p _j$ over $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Besides we denote the real cut points by the vector ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, with $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, these points represent the change of segment. We propose to use a penalized maximum likelihood criterion to infer simultaneously the number of cut points and the position of each one those points. We also present a algorithm to sequence segmentation and we present some simulations to show how it works and its convergence speed. Our principal result is the proof of strong consistency of this estimators when $m$ grows to infinity.
83

Extensões de distribuições com aplicação à analise de sobrevivência / Extensions of distributions with application to survival analysis

Olmos, Yolanda Magaly Gómez 09 February 2017 (has links)
Nesta tese serão estudadas diferentes generalizações de algumas distribuições bem conhecidas na literatura para os tempos de vida, tais como exponencial, Lindley, Rayleigh e exponencial segmentada, entre outras, e compará-las com outras extensões com suporte positivo. A finalidade dessas generalizações é flexibilizar a função de risco de modo que possam assumir formas mais flexíveis. Além disso, pretende-se estudar propriedades importantes dos modelos propostos, tais como os momentos, coeficientes de curtose e assimetria e função quantílica, entre outras. A estimação dos parâmetros é abordada através dos métodos de máxima verossimilhança, via algoritmo EM (quando for possível) ou também, do método dos momentos. O comportamento desses estimadores foi avaliado em estudos de simulação. Foram ajustados a conjuntos de dados reais, usando uma abordagem clássica, e compará-los com outras extensões na literatura. Finalmente, um dos modelos propostos é considerado no contexto de fração de cura. / The main focus of this thesis is the study of generalizations for some positive distributions widely known in the literature of lifetime analysis, such as the exponential, Lindley, Rayleigh and segmented exponential. Comparisons of the proposed extensions and alternative extensions in the literature such as the generalized exponential distribution, are reported. Moreover, of interest is also the study of some properties of the proposed distributions such as moments, kurtosis and asymmetry coefficients, quantile functions and the risk function. Parameter estimation is approached via maximum likelihood (using the EM-algorithm when available) and the method of moments as initial parameter estimators. Results of simulation studies are reported comparing the performance of these estimators with small and moderate sample sizes. Further comparisons are reported for real data applications, where the proposed models show satisfactory performance. Finally, one of the models proposed is considered no context of cure rate.
84

Distribuições das classes Kumaraswamy generalizada e exponenciada: propriedades e aplicações / Distributions of the generalized Kumaraswamy and exponentiated classes: properties and applications

Braga Junior, Antonio Carlos Ricardo 04 April 2013 (has links)
Recentemente, Cordeiro e de Castro (2011) apresentaram uma classe generalizada baseada na distribuição Kumaraswamy (Kw-G). Essa classe de distribuições modela as formas de risco crescente, decrescente, unimodal e forma de U ou de banheira. Uma importante distribuição pertencente a essa classe é a distribuição Kumaraswamy Weibull modificada (KwMW) proposta por Cordeiro; Ortega e Silva (2013). Com isso foi utilizada essa distribuição para o desenvolvimento de algumas novas propriedades e análise bayesiana. Além disso, foi desenvolvida uma nova distribuição de probabilidade a partir da distribuição gama generalizada geométrica (GGG) que foi denominada de gama generalizada geométrica exponenciada (GGGE). Para a nova distribuição GGGE foram calculados os momentos, a função geradora de momentos, os desvios médios, a confiabilidade e as estatísticas de ordem. Desenvolveu-se o modelo de regressão log-gama generalizada geométrica exponenciada. Para a estimação dos parâmetros, foram utilizados os métodos de máxima verossimilhança e bayesiano e, finalmente, para ilustrar a aplicação da nova distribuição foi analisado um conjunto de dados reais. / Recently, Cordeiro and de Castro (2011) showed a generalized class based on the Kumaraswamy distribution (Kw-G). This class of models has crescent risk forms, decrescent, unimodal and U or bathtub form. An important distribution belonging to this class the Kumaraswamy modified Weibull distribution (KwMW), proposed by Cordeiro; Ortega e Silva (2013). Thus this distribution was used to develop some new properties and bayesian analysis. Furthermore, we develop a new probability distribution from the generalized gamma geometric distribution (GGG) which it is called generalized gamma geometric exponentiated (GGGE) distribution. For the new distribution we calculate the moments, moment generating function, mean deviation, reliability and order statistics. We define a log-generalized gamma geometric exponentiated regression model. The methods used to estimate the model parameters are: maximum likelihood and bayesian. Finally, we illustrate the potentiality of the new distribution by means of an application to a real data set.
85

Factor Analysis for Stock Performance

Cheng, Wei 04 May 2005 (has links)
Factor models are very useful and popular models in finance. In this project, factor models are used to examine hidden patterns of relationships for a set of stocks. We calculate the weekly rates of return and analyze the correlation among those variables. We propose to use Principal Factor Analysis (PFA) and Maximum-likelihood Factor Analysis (MLFA) as a data mining tool to recover the hidden factors and the corresponding sensitivities. Prior to applying PFA and MLFA, we use the Scree Test and the Proportion of Variance Method for determining the optimal number of common factors. Then, rotation for PFA and MLFA were performed to improve the first order approximations. PFA and MLFA were used to extract three underlying factors. It was determined that the MLFA provided a more accurate estimation for weekly rates of return
86

Seleção de modelos para segmentação de sequências simbólicas usando máxima verossimilhança penalizada / A model selection criterion for the segmentation of symbolic sequences using penalized maximum likelihood

Bruno Monte de Castro 20 February 2013 (has links)
O problema de segmentação de sequências tem o objetivo de particionar uma sequência ou um conjunto delas em um número finito de segmentos distintos tão homogêneos quanto possível. Neste trabalho consideramos o problema de segmentação de um conjunto de sequências aleatórias, com valores em um alfabeto $\\mathcal$ finito, em um número finito de blocos independentes. Supomos ainda que temos $m$ sequências independentes de tamanho $n$, construídas pela concatenação de $s$ segmentos de comprimento $l^{*}_j$, sendo que cada bloco é obtido a partir da distribuição $\\p _j$ em $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Além disso denotamos os verdadeiros pontos de corte pelo vetor ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, com $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, esses pontos representam a mudança de segmento. Propomos usar o critério da máxima verossimilhança penalizada para inferir simultaneamente o número de pontos de corte e a posição de cada um desses pontos. Também apresentamos um algoritmo para segmentação de sequências e realizamos algumas simulações para mostrar seu funcionamento e sua velocidade de convergência. Nosso principal resultado é a demonstração da consistência forte do estimador dos pontos de corte quando o $m$ tende ao infinito. / The sequence segmentation problem aims to partition a sequence or a set of sequences into a finite number of segments as homogeneous as possible. In this work we consider the problem of segmenting a set of random sequences with values in a finite alphabet $\\mathcal$ into a finite number of independent blocks. We suppose also that we have $m$ independent sequences of length $n$, constructed by the concatenation of $s$ segments of length $l^{*}_j$ and each block is obtained from the distribution $\\p _j$ over $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Besides we denote the real cut points by the vector ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, with $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, these points represent the change of segment. We propose to use a penalized maximum likelihood criterion to infer simultaneously the number of cut points and the position of each one those points. We also present a algorithm to sequence segmentation and we present some simulations to show how it works and its convergence speed. Our principal result is the proof of strong consistency of this estimators when $m$ grows to infinity.
87

Estimação em modelos funcionais com erro normais e repetições não balanceadas / Estimation in functional models by using a normal error and replications unbalanced

Joan Neylo da Cruz Rodriguez 29 April 2008 (has links)
Esta dissertação compreende um estudo da eficiência de estimadores dos parâmetros no modelo funcional com erro nas variáveis, com repetições para contornar o problema de falta de identificação. Nela, discute-se os procedimentos baseados nos métodos de máxima verossimilhança e escore corrigido. As estimativas obtidas pelos dois métodos levam a resultados similares. / This work is concerned with a study on the efficiency of parameter estimates in the functional linear relashionship with constant variances. Where the lack of identification is resolved of by considering replications. Estimation is dealt with by using maximum likelihood and the corrected score approach. Comparisons between the approaches are illustrated by using simulated data.
88

Influência local em modelos geoestatísticos T-Student com aplicações a dados agrícolas / Local influence in geoestatistic T-Student models applied to agricultural data

Assumpção, Rosangela Aparecida Botinha 16 December 2010 (has links)
Made available in DSpace on 2017-07-10T19:25:00Z (GMT). No. of bitstreams: 1 Rosangela_texto.pdf: 2310887 bytes, checksum: d9e69eaef22ee697283c66446001b19e (MD5) Previous issue date: 2010-12-16 / The presence of inconsistent observations make it improper to consider the gaussian process, as it is found in the literature. This process should be replaced by models of the symmetric distribution classes, such as the t-student distribution, which incorporates additional parameters to reduce the influence of inconsistent points. This work has developed the EM algorithm for estimating the structure of the spatial dependence of the parameters and of the spatial linear model, assuming that the process shows t-student n-varied distribution. This distribution has the degree of freedom v as the additional parameter, which has been considered to be fixed in this research. Techniques to diagnose influence are used after the estimation of parameters, in order to assess the quality of the adjustment of the model by the assumptions made and for the robustness of the results of the estimates when there are disturbances in the model or data. In the present work, diagnostic techniques for the assessment of local influence in linear spatial models have been developed, considering the process with t-student n-varied distribution. The usual diagnostic technique evaluates the withdrawing of the likelihood rate by the function of the likelihood logarithm. In this proposal, in addition to considering the usual technique, we use the withdrawing of the likelihood by Q-displacement of the complete likelihood. The application of the usual technique and of the one proposed here are illustrated through the analyses of both simulated and real data, provenient of agricultural experiments. / A presença de observações discrepantes torna imprópria a análise do processo gaussiano, sendo assim, como é encontrado na literatura, esse processo deve ser substituído por modelos da classe das distribuições simétricas, tal como a distribuição t-student, que incorpora parâmetros adicionais para reduzir a influência dos pontos discrepantes. Neste trabalho, assumiu-se que o processo apresenta distribuição t-student n-variada. Essa distribuição tem como parâmetro adicional o grau de liberdade v, que aqui considerou-se fixo. Dessa forma, desenvolveu-se o algoritmo EM e o algoritmo de NR para a estimação dos parâmetros da estrutura de dependência espacial e do modelo espacial linear. Após a estimação dos parâmetros, utilizou-se duas técnicas de diagnósticos de influência local, ambas com o intuito de avaliar a qualidade do ajuste do modelo pelas suposições feitas e pela robustez dos resultados das estimativas quando há perturbações no modelo ou nos dados. A primeira técnica, denominada "usual", já utilizada por diversos autores, avalia o afastamento da verossimilhança pela função do logaritmo da verossimilhança e a segunda técnica que aqui apresentamos propõe a análise de influência local pelo Q-afastamento da função de verossimilhança para dados completos. Essas técnicas permitiram verificar a influência no afastamento da verossimilhança, na matriz de covariância, no preditor linear e nos valores preditos por meio da análise gráfica. Para ilustrar a aplicação da técnica usual e da nossa proposta, realizou-se a análise de dados simulados e dados reais provenientes de experimentos agrícolas.
89

The ACD Model with an application to the brazilian interbank rate futures market

Assun????o, Ad??o Vone Teixeira de 31 March 2016 (has links)
Submitted by Jadi Castro (jadiana.castro@ucb.br) on 2017-02-21T18:01:09Z No. of bitstreams: 1 AdaoVoneTeixeiradeAssuncaoDissertacao2016.pdf: 1069424 bytes, checksum: 2cec9cf848a40c34902559e8d8f0c95c (MD5) / Approved for entry into archive by Kelson Anthony de Menezes (kelson@ucb.br) on 2017-02-21T18:02:23Z (GMT) No. of bitstreams: 1 AdaoVoneTeixeiradeAssuncaoDissertacao2016.pdf: 1069424 bytes, checksum: 2cec9cf848a40c34902559e8d8f0c95c (MD5) / Made available in DSpace on 2017-02-21T18:02:24Z (GMT). No. of bitstreams: 1 AdaoVoneTeixeiradeAssuncaoDissertacao2016.pdf: 1069424 bytes, checksum: 2cec9cf848a40c34902559e8d8f0c95c (MD5) Previous issue date: 2016-03-31 / Aplicamos o Modelo Autoregressivo de Dura????o Condicional (ACD) Mercado de Futuros de Taxa Interbanc??ria Brasileira. A amostra foi constru??da com base em contratos M??s antes da expira????o para replicar a curva de obriga????es de um m??s eo per??odo estudado Vai de julho de 2013 a setembro de 2015. Utilizamos M??xima Verossimilhan??a Estimativa baseada nas distribui????es de probabilidade mais populares na literatura ACD: Exponencial, gama e Weibull e verificou-se que a estimativa baseada na A distribui????o exponencial foi a melhor op????o para modelar os dados. / We applied the basic Autoregressive Conditional Duration Model (ACD) to the Brazilian Interbank Rate Futures Market. The sample was built using contracts in the month prior to expiration to replicate a one month bond curve and the period studied goes from july of 2013 to september of 2015. We used Maximum Likelihood Estimation based on the most popular probability distributions in the ACD literature: exponential, gamma and Weibull and we found that the estimation based on the exponential distributional was the best option to model the data.
90

Influência local em modelos geoestatísticos T-Student com aplicações a dados agrícolas / Local influence in geoestatistic T-Student models applied to agricultural data

Assumpção, Rosangela Aparecida Botinha 16 December 2010 (has links)
Made available in DSpace on 2017-05-12T14:48:22Z (GMT). No. of bitstreams: 1 Rosangela_texto.pdf: 2310887 bytes, checksum: d9e69eaef22ee697283c66446001b19e (MD5) Previous issue date: 2010-12-16 / The presence of inconsistent observations make it improper to consider the gaussian process, as it is found in the literature. This process should be replaced by models of the symmetric distribution classes, such as the t-student distribution, which incorporates additional parameters to reduce the influence of inconsistent points. This work has developed the EM algorithm for estimating the structure of the spatial dependence of the parameters and of the spatial linear model, assuming that the process shows t-student n-varied distribution. This distribution has the degree of freedom v as the additional parameter, which has been considered to be fixed in this research. Techniques to diagnose influence are used after the estimation of parameters, in order to assess the quality of the adjustment of the model by the assumptions made and for the robustness of the results of the estimates when there are disturbances in the model or data. In the present work, diagnostic techniques for the assessment of local influence in linear spatial models have been developed, considering the process with t-student n-varied distribution. The usual diagnostic technique evaluates the withdrawing of the likelihood rate by the function of the likelihood logarithm. In this proposal, in addition to considering the usual technique, we use the withdrawing of the likelihood by Q-displacement of the complete likelihood. The application of the usual technique and of the one proposed here are illustrated through the analyses of both simulated and real data, provenient of agricultural experiments. / A presença de observações discrepantes torna imprópria a análise do processo gaussiano, sendo assim, como é encontrado na literatura, esse processo deve ser substituído por modelos da classe das distribuições simétricas, tal como a distribuição t-student, que incorpora parâmetros adicionais para reduzir a influência dos pontos discrepantes. Neste trabalho, assumiu-se que o processo apresenta distribuição t-student n-variada. Essa distribuição tem como parâmetro adicional o grau de liberdade v, que aqui considerou-se fixo. Dessa forma, desenvolveu-se o algoritmo EM e o algoritmo de NR para a estimação dos parâmetros da estrutura de dependência espacial e do modelo espacial linear. Após a estimação dos parâmetros, utilizou-se duas técnicas de diagnósticos de influência local, ambas com o intuito de avaliar a qualidade do ajuste do modelo pelas suposições feitas e pela robustez dos resultados das estimativas quando há perturbações no modelo ou nos dados. A primeira técnica, denominada "usual", já utilizada por diversos autores, avalia o afastamento da verossimilhança pela função do logaritmo da verossimilhança e a segunda técnica que aqui apresentamos propõe a análise de influência local pelo Q-afastamento da função de verossimilhança para dados completos. Essas técnicas permitiram verificar a influência no afastamento da verossimilhança, na matriz de covariância, no preditor linear e nos valores preditos por meio da análise gráfica. Para ilustrar a aplicação da técnica usual e da nossa proposta, realizou-se a análise de dados simulados e dados reais provenientes de experimentos agrícolas.

Page generated in 0.0185 seconds