Spelling suggestions: "subject:"MCMC 3methods"" "subject:"MCMC 4methods""
11 |
Bayesian latent class metric conjoint analysis. A case study from the Austrian mineral water market.Otter, Thomas, Tüchler, Regina, Frühwirth-Schnatter, Sylvia January 2002 (has links) (PDF)
This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes' factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
12 |
Modeling survival after acute myocardial infarction using accelerated failure time models and space varying regressionYang, Aijun 27 August 2009 (has links)
Acute Myocardial Infarction (AMI), commonly known as heart attack, is a leading
cause of death for adult men and women in the world. Studying mortality after AMI
is therefore an important problem in epidemiology. This thesis develops statistical
methodology for examining geographic patterns in mortality following AMI. Specifically, we develop parametric Accelerated Failure Time (AFT) models for censored survival data, where space-varying regression is used to investigate spatial patterns of mortality after AMI. In addition to important covariates such as age and gender, the regression models proposed here also incorporate spatial random e ects that describe the residual heterogeneity associated with di erent local health geographical units. We conduct model inference under a hierarchical Bayesian modeling framework using Markov Chain Monte Carlo algorithms for implementation. We compare an array of models and address the goodness-of- t of the parametric AFT model through simulation studies and an application to a longitudinal AMI study in Quebec. The application of our AFT model to the Quebec AMI data yields interesting ndings
concerning aspects of AMI, including spatial variability. This example serves as a
strong case for considering the parametric AFT model developed here as a useful tool
for the analysis of spatially correlated survival data.
|
13 |
A Fully Bayesian Analysis of Multivariate Latent Class Models with an Application to Metric Conjoint AnalysisFrühwirth-Schnatter, Sylvia, Otter, Thomas, Tüchler, Regina January 2002 (has links) (PDF)
In this paper we head for a fully Bayesian analysis of the latent class model with a priori unknown number of classes. Estimation is carried out by means of Markov Chain Monte Carlo (MCMC) methods. We deal explicitely with the consequences the unidentifiability of this type of model has on MCMC estimation. Joint Bayesian estimation of all latent variables, model parameters, and parameters determining the probability law of the latent process is carried out by a new MCMC method called permutation sampling. In a first run we use the random permutation sampler to sample from the unconstrained posterior. We will demonstrate that a lot of important information, such as e.g. estimates of the subject-specific regression coefficients, is available from such an unidentified model. The MCMC output of the random permutation sampler is explored in order to find suitable identifiability constraints. In a second run we use the permutation sampler to sample from the constrained posterior by imposing identifiablity constraints. The unknown number of classes is determined by formal Bayesian model comparison through exact model likelihoods. We apply a new method of computing model likelihoods for latent class models which is based on the method of bridge sampling. The approach is applied to simulated data and to data from a metric conjoint analysis in the Austrian mineral water market. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
14 |
FGM e suas generalizações sob um ponto de vista bayesiano / A bayesian approach for FGM and its generalizationsSchultz, José Adolfo de Almeida 18 August 2018 (has links)
Orientador: Verónica Andrea González-Lopez / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T10:24:16Z (GMT). No. of bitstreams: 1
Schultz_JoseAdolfodeAlmeida_M.pdf: 781903 bytes, checksum: 6f13c49a1d8a278498ea105b9b9a7a31 (MD5)
Previous issue date: 2011 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic digital document / Mestrado / Inferencia Bayesiana / Mestre em Estatística
|
15 |
Impacto de saltos no comportamento de preços de commodities / Impact of jumps on commodity prices behaviorPaulo Martins Barbosa Fortes Manoel 03 December 2012 (has links)
Neste trabalho analisa-se a relevância de saltos no apreçamento de derivativos de commodities através da comparação de dois modelos. O primeiro leva em consideração um convenience yield com reversão à média, enquanto o segundo é uma generalização do primeiro com saltos no preço à vista. Ambos os modelos são estimados por meio de uma abordagem Bayesiana, sendo as distribuições a posteriori simuladas com o uso de técnincas da família MCMC. Dados de petróleo, trigo e cobre são utilizados para fins de estimação. A análise econométrica indica significância estatística para saltos, mas não encontrou-se evidência significativa de que saltos melhoram o apreçamento de derivativos. / In this work we analyze the relevance of jumps in the pricing of commodity contingent claims by comparing two models. The first takes into account mean-reverting convenience yields, and the second is a generalization of the first with jumps in spot prices. Both models were estimated using a Bayesian approach, and posterior distributions where simulated using MCMC techniques. Oil, copper and wheat data where used for estimation proposes. Econometric analysis indicates statistical significance for jumps, but we found no strong evidence that jumps improve derivative pricing.
|
16 |
Assimetria de informação no mercado brasileiro de saúde suplementar: testando a eficiência dos planos de cosseguro / Asymmetric information in brazilian private health insurance market: testing the benefice of coinsurance plansLucas Brunetti 14 April 2010 (has links)
A assimetria de informação no sistema de saúde é um tema que ultrapassa o interesse apenas das empresas operadoras de seguro de saúde, de políticas públicas e de pesquisa acadêmica. O presente estudo analisa como os contratos de cosseguro influenciam os fenômenos do risco moral e da seleção adversa presentes nos planos de saúde e sua relação com a demanda de serviços médicos. Neste contexto, analisar a assimetria de informação no sistema de saúde se torna relevante por oferecer uma resposta consistente, que poderá embasar tanto as políticas públicas, quanto a forma de comercialização dos planos pelas empresas. Esse trabalho, a partir da Pesquisa Nacional por Amostra de Domicílios - PNAD 2003, procura observar a eficiência do contrato cosseguro como um mecanismo de mitigação de assimetria de informação, ou seja, excluídos os efeitos dos riscos associados ao indivíduo, se a diferença de contrato altera o comportamento dos agentes. Para atingir esse resultado foi proposto um método para testar a assimetria de informação utilizando o método de Monte Carlo. Os resultados sugerem que os contratos de cosseguros foram eficientes nos planos individuais, enquanto nos planos coletivos sua influência pode ser descartada. Por fim, o trabalho aponta que é mais eficiente, pelo bemestar social, a utilização de cosseguro para os contratos individuais, enquanto para os contratos coletivos são mais eficiente os contratos sem cosseguro. / Asymmetric information in the health care system is a topic of interest for medical insurance, policy makers and scholars. This research analyses how the contracts of coinsurance motivate the moral hazard and adverse selection phenomenon and consequences in medical services demand. In this context, the analysis of asymmetric information in the health care system provides support for the design of public policy and insurance plans. This research aims to estimate a structural model of health insurance and health care choices, using the 2003 National Household Sample Survey PNAD. It tested whether coinsurance contracts can work as efficient mechanisms to reduce risks related to asymmetric information. A methodological procedure using the Monte Carlo method was proposed to test for asymmetric information issues. The research suggests that coinsurance contracts were beneficial for individual plans, from a social welfare perspective. For the group plans, the benefit was not supported
|
17 |
Stochastic Signal Processing Techniques for Reconstruction of Multilayered Tissue Profiles Using UWB RadarCivek, Burak Cevat January 2021 (has links)
No description available.
|
18 |
On incorporating heterogeneity in linkage analysisBiswas, Swati January 2003 (has links)
No description available.
|
19 |
Bayesian Parameter Estimation on Three Models of InfluenzaTorrence, Robert Billington 11 May 2017 (has links)
Mathematical models of viral infections have been informing virology research for years. Estimating parameter values for these models can lead to understanding of biological values. This has been successful in HIV modeling for the estimation of values such as the lifetime of infected CD8 T-Cells. However, estimating these values is notoriously difficult, especially for highly complex models. We use Bayesian inference and Monte Carlo Markov Chain methods to estimate the underlying densities of the parameters (assumed to be continuous random variables) for three models of influenza. We discuss the advantages and limitations of parameter estimation using these methods. The data and influenza models used for this project are from the lab of Dr. Amber Smith in Memphis, Tennessee. / Master of Science / Mathematical models of viral infections have been informing virology research for years. Estimating parameter values for these models can lead to understanding of biological values. This has been successful in HIV modeling for the estimation of values such as the lifetime of infected CD8 T-Cells. However, estimating these values is notoriously difficult, especially for highly complex models. We use Bayesian inference and Monte Carlo Markov Chain methods to perform parameter estimation for three models of influenza. We discuss the advantages and limitations of these methods. The data and influenza models used for this project are from the lab of Dr. Amber Smith in Memphis, Tennessee.
|
20 |
Modely predikce defaultu klienta / Models of default prediction of a clientHezoučká, Šárka January 2013 (has links)
The aim of this thesis is to investigate possible improvement of scoring models prediction power in retail credit segment by using structural models estimating the future development of behavioral score. These models contain the informa- tion about past development of the behavioral score by parameters which take into account the sensitivity of clients' probability of default on individual market and life changes. These parameters are estimated by Markov Chain Monte Carlo methods based on score history. Eight different types of structural models were applied to real data. The diversification measure of individual models is compared using the Gini coefficient. These structural models were compared with each other and also with the existing scoring model of the credit institution which provided the underlying data. 1
|
Page generated in 0.0411 seconds