731 |
Fabrication of novel cytocompatible membranes for ocular application, concentrating in particular on age-related macular degeneration (AMD)Haneef, Atikah Shahid January 2014 (has links)
The aims of this research were to investigate polymer fibre morphology, overall mat morphology, mechanical properties and general handling of the mats, and ideal mat thickness in order to fabricate a suitable substrate for potential use in cell transplantation for application as a permanent substrate for the treatment of dry age-related macular degeneration (AMD). Polystyrene (PS), poly(ethylene terephthalate) (PET) and polyurethane (PU) were electrospun to ascertain the ideal electrospinning parameters to reproducibly obtain fibres to construct a mat as a potential candidate for a replacement Bruch’s membrane (BM). After identifying the ideal spinning parameters, mats were fabricated, their fibre morphology, overall mat morphology, and handling during processing were examined. This allowed the shortlisting of PS and PET substrates, which were suitable to be taken forward for further testing and cell culture. PU was found to be unsuitable as it had a tendency to become entwined and stick to itself, which would destroy the gross mat morphology. Therefore PU was excluded from further testing. Further handling, both quantitative and qualitative, and thickness and porosity were tested for PS and PET mats. Electrospun PET demonstrated greater handling and durability properties compared to PS mats, which were more fragile. PET was able to withstand twisting, folding, and rolling, whereas PS could not undergo twisting and fell apart. PS mats were thicker and more porous compared to PET mats, which was attributed to the widely spaced placement of the larger PS fibres and the fluffy gross morphology of the PS mats, in comparison to the closer fibre placement of the smaller PET mats which had a smooth gross mat morphology. Considering this, PS mats were compressed and thickness and porosity was reduced, while maintaining its fibrous structure. However the compressed PS mats became extremely fragile and could not withstand much handling. Although PET mats were thinner than PS mats, it did not match the native BM thickness and so experiments in varying collection time during electrospinning to match the native BM thickness were undertaken. Tensile tests, thickness and porosity measurements showed that PET tensile properties, thickness, and porosity reduced with reduced collection time. For the purposes of surface treatment and cell culture, uncompressed mats collected for 60 minutes were used since sufficient PS fibres were able to be collected to form a mat that was able to withstand processing at this collection time. Effect of UV/ozone surface treatment was tested for both PS and PET mats. Treatment of both substrate types affected protein adsorption, with evidence of aminolysis observed on PET substrates. Short-term initial growth and survival of retinal pigment epithelial cells (RPE cells) on electrospun, surface oxidised PS and PET was investigated. Untreated PS did not support cell proliferation and although treated PS did, the resultant RPE cell morphology was undesirable, therefore was not taken forward to long term cell culture. Treated and untreated PET supported cell proliferation, and was taken forward to the long term culture study, where cells exhibited the desired monolayer morphology. In this work it has been demonstrated that electrospun PET may potentially be a suitable candidate as cell carrier substrate for subsequent implantation in application towards AMD treatment.
|
732 |
Terahertz System-on-Chip using coplanar stripline transmission line on thin membraneAbelmouty, Walid Gomaa Abdelwahed 04 January 2021 (has links)
A guided-wave THz System-on-Chip (TSoC) is emerging as an attractive alternative to the routine free-space THz systems to reduce physical bulk, propagation loss, pulse dispersion and cost of free-space THz systems. Recently, our research group succeeded in demonstrating a novel waveguided TSoC based on the coplanar stripline (CPS) transmission lines on a 1 µm-thin Silicon Nitride membrane. The novelty of this membrane-based platform was bonding the transmitter and receiver directly on the transmission line to eliminate the radiation loss by the routine THz optics. Besides, the delicate thin-membrane dramatically reduces the dielectric loss of the platform which results in low-loss and low-dispersion THz-bandwidth pulses.
This Ph.D. dissertation presents the first end-to-end TSoC components that were designed and fabricated using the CPS transmission lines on 1 µm-thin Si3N4 membranes. These components are integrated into a TSoC by bending or connecting different impedance CPS transmission-line sections. We demonstrate four passive TSoC components: THz low-pass filter (TLPF), THz power divider (TPD), THz apodized Bragg grating (TABG) and THz branch-line coupler (TBLC).
One of the most significant gains from this work is the assurance that more complex TSoCs can be designed and fabricated using this membrane-platform based on the strong agreement between simulation and experimental results. / Graduate / 2021-12-01
|
733 |
The reasons for the high power density of fuel cells fabricated with directly deposited membranesVierrath, Severin, Breitwieser, Matthias, Klingele, Matthias, Britton, Benjamin, Holdcroft, Steven, Zengerle, Roland, Thiele, Simon 27 October 2020 (has links)
In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.
|
734 |
Nanocomposite Membrane via Magnetite Nanoparticle AssemblyXie, Yihui 07 1900 (has links)
Membrane technology is one of the most promising technologies for addressing the global water crisis as well as in many other applications. One of the drawbacks of current ultra- and nanofiltration membranes is the relatively broad pore size distribution. Block copolymer membranes with ultrahigh permeability and very regular pore sizes have been recently demonstrated with pores being formed by the supramolecular assembly of core/shell micelles. Our study aimed at developing an innovative and economically efficient alternative method to fabricate isoporous membrane by self-assembly of magnetic nanoparticle with a polystyrene shell, mimicking the behavior of block copolymer micelle. Fe3O4 nanoparticles of ~13 nm diameter were prepared by co-precipitation as cores. The initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles with two strategies. Then the surface initiated ATRP of styrene was carried out to functionalize nanoparticles with polystyrene through a “grafting from” method. Finally, the nanocomposite membrane was cast from 50 wt % Fe3O4@PS brush polymer solution in DMF via non solvent phase inversion. Microscopies reveal an asymmetric membrane with a dense thin layer on top of a porous sponge-like layer. This novel class of asymmetric membrane, based on the pure assembly of functionalized nanoparticles was prepared for the first time. The nanoparticles are well distributed however with no preferential order yet in the as-cast film.I would like to thank my committee chair and advisor, Prof. Suzana Nunes, and other committee members, Prof. Klaus-Viktor Peinemann and Prof. Gary Amy, for their guidance and support throughout the course of this research. My appreciation also goes to my colleagues in our group for useful discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and Dr. Long Chen, for their assistance for various microscopy measurements. Finally, my heartfelt gratitude is extended to my parents and all my friends. I cannot finish this thesis without their encouragement and support.
|
735 |
Identification of Proteins Involved in Salinity Tolerance in Salicornia bigeloviiSalazar Moya, Octavio Ruben 11 1900 (has links)
With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored.
Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery.
In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for Salicornia research by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives in highly saline environments.
|
736 |
Membrane-Mimic Nanoparticles for Drug and Gene DeliveryAlamoudi, Kholod 12 1900 (has links)
Nanoscale organic particles have gained a prominent role in drug and gene delivery field. As the nature of the nanoparticle’s (NPs) surface plays a major role in their targeting efficiency, bioavailability, and cytotoxicity, membrane-mimic nanoparticles are considered highly attractive materials for in vivo and in vitro applications. Synthetic membrane vesicles (liposomes) and nanoconstructs built with native cancer cellular membrane are excellent scaffolds to improve cellular delivery. Liposomes have been extensively used due to their high loading capacity, biocompatibility and biodegradability. However, modifications with stimuli responsive materials are highly needed to improve their stability and turn them active participants in controlled delivery.
Towards a nature inspired approach, reconstructed bilayers from cell membrane are a good candidate to enhance NP’s targeting ability and biocompatibility.
The primary focus of this research is to develop smart responsive (lipid) membrane coated NPs with surface modifications for controlled and targeted drug and/or gene delivery for application in cancer therapy. Three approaches have been developed, namely i) liposomes as thermoresponsive nanocarriers for the delivery of genetic material; ii) magnetically photosensitive liposome hybrids and iii) biomimetic periodic mesoporous organo silica engineered for better a biocompatibility and targeting capabilities. In the first project synthetic liposomes were loaded with ammonium bicarbonate salt (ABC) and siRNA. The combination of lipids chosen and the relative ratios allowed the rapid release of the genetic material to the multi drug resistant cancer cells studied, upon external heat trigger. This design has improved the gene silencing efficiency via successful endosomal escape. In the second project, SPIO@Au nanoparticles were imbedded in the lipid bilayer to produce a photo/thermal responsive carrier that could be also used in cell imaging besides gene transfection and drug delivery. For the final project, a nature inspired coating was used in periodic mesoporous organosilica (PMO) NPs. PMOs were functionalized with colorectal cancer cell membrane. The resulting CC@NH2-TSPMOs, holding the diverse cancer cell membrane antigens showed a promising potential towards disease targeting and improved pharmacokinetics. This research confirms the notion of how nanotechnology engineering approaches are effective to improve the quality and effectiveness of cancer therapeutics.
|
737 |
Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite MembranesDuan, Jintang 11 1900 (has links)
This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states.
The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions.
The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions, which significantly decreased gas permeance and increased gas selectivity. Specifically, high He and H2 selectivity against CO2 suggests the potential applications of this membrane in He recovery and CO2 capture in pre-combustion.
Finally, the dense PA matrix was modified with two types of novel nanofiller to improve desalination performance in RO. A series of dense, nano-sized (1-3 nm) polyhedral oligomeric silsesquioxanes (POSS) with different functional groups were systematically incorporated into the PA matrix by physical blending or chemical fixation. The free volume of the PA matrix increased with addition of POSS, leading to water flux increases of up to 67 %, while maintaining high NaCl rejections. The effects of adding microporous, hydrophobic zeolitic imidazolate framework-8 (ZIF-8) nanoparticles into PA are presented in the last chapter. A 162 % water flux increase was achieved without decreasing NaCl rejection. This interesting result can be attributed to a less crosslinked PA structure and to the intrinsic desalination properties of ZIF-8.
|
738 |
Preparation of Zeolitic Imidazolate Framework-8 (ZIF-8) Membrane on Porous Polymeric Support via Contra-Diffusion MethodTan, Xiaoyu 18 May 2016 (has links)
In the last decade, many attempts were made to put metal organic frameworks (MOFs) in industrial applications, but most of these efforts weren’t successfully. As one of the few MOFs produced on industrial scale, ZIF-8 has interesting pore size, huge internal surface area and great thermal and chemical stability. Therefore, ZIF-8 might become the first MOF, which will be applied in industrial separation processes.
In this thesis, a synthesis study is presented, which leads to a cheap and convenient way to
fabricate defect-free and thin ZIF-8 membranes on porous polymeric supports showing high selectivity and high gas permeance. The ZIF-8 layers were produced via a contra-diffusion method. Several polymeric membranes were employed as support in this study, such as PAN, PEI, PSU, PA and PTSC. We studied the influence of the polymeric support properties for the ZIF-8 membrane preparation and optimized the ZIF-8 preparation conditions. The ZIF-8 membranes were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). For gas permeation test, we chose a Wicke-Kallenbach apparatus to measure membrane’s gas permeance and selectivity. One of the best ZIF-8 membranes exhibited a hydrogen permeance of 3.45 × 10-8 mol m-2 s-1 Pa-1 and
an ideal selectivity of hydrogen over propane of about 500.
|
739 |
High-Performance Carbon Molecular Sieve Gas Separation Membranes Based on a Carbon-Rich Intrinsically Microporous Polyimide PrecursorHazazi, Khalid 04 1900 (has links)
The objective of this study was to investigate the transport properties and the microstructure of CMS membranes derived from a carbon-rich intrinsically microporous polyimide precursor. CMS membranes were prepared by a heat treatment of the polyimide precursor using a well-defined heating protocol in a horizontal tube furnace up to 1000 °C. A nitrogen purge was kept inside the furnace to remove all the evolved by-products as the precursor started to decompose and carbonize. The microstructures of the carbon molecular sieve membranes (CMSMs) were examined using wide-angle x-ray diffraction, Raman spectra, N2 adsorption and CO2 adsorption.
The average interlayer spacing (d002) between the graphite plates was estimated using the data obtained by the WXRD. The average d002 decreased as a result of increasing the pyrolysis temperature; average d002 distances for CMS prepared at 700 and 1000 °C were estimated to be 0.40 to 0.38 nm, respectively. Raman spectra confirmed the progressive structural ordering as heat-treatment temperature increased. A substantial decrease in the intensity of the D band was observed as a function of pyrolysis temperature, indicating a decrease in the disordered structure. Graphitic structure and turbostratic carbon coexist in the as-prepared carbon membranes, of which the microcrystal size La and the stacking height Lc were increasing as a function of pyrolysis temperature.
N2 adsorption showed a remarkable increase in the BET surface area as a function of pyrolysis temperature. BET surface areas for the pristine and CMSs prepared at 700 to 900 °C were in the range of 650 to 680 m2/g with a remarkable shift in the pore size distribution toward the ultra- microporous region. CO2 adsorption was used to estimate the surface area for pores with sizes of less than 1 nm. Surface areas were observed to increase from 350 m2/g at 500 °C to 857 m2/g at 800 °C, and then started dropping slightly from 857 to 650 m2/g at 800 to 1000 °C, respectively. This is believed to be caused by pore shrinkage effect being severe after 800 °C, which caused some pores to be hard to spot by the CO2 adsorption technique. The transport properties of the pristine and CMS membranes were tested using pure gases He, H2, N2, CH4, CO2, and O2. From the pristine to SBFDA-DMN-700°C, the selectivity increased significantly, with a massive loss in the permeability except for He and H2. From SBFDA-DMN- 700 °C to 900 °C, a substantial increase in selectivity with a moderate decline in permeability was observed. Beyond 900 °C, the permeability again decreased moderately, but a tremendous increase in the selectivity for N2/CH4, CO2/CH4, and H2/CH4 was observed.
|
740 |
Investigation of the Effect of Operational Parameters on the Fouling Development and Control in an Algal Membrane Photobioreactor for the Treatment of Simulated Secondary WastewaterLamprea Cala, Andres 07 1900 (has links)
The release of water effluents rich in nutrients such as nitrogen and phosphorus without adequate treatment represents environmental and human health concerns. Growing concerns about these impacts have resulted in increasingly stringent water quality regulations that encouraged the adoption of advanced treatment processes. Microalgae-based advanced wastewater treatment has gained momentum owing to its well-known advantages for advanced wastewater treatment, including the recovering of nutrients for the production of fertilizers, biofuels and fine chemical from microalgal biomass. Nevertheless, the progressive membrane fouling and permeate flux declining hamper the large-scale commercialization of membrane photobioreactors (MPBRs) in the wastewater sector. In order to get a further understanding of the fouling mechanisms and antifouling control strategies, this study investigated the effect of the hydraulic retention time on the fouling development, and the effect of different physical fouling control strategies in the fouling mitigation. A synthetic secondary effluent was continuously fed to three MPBRs operated at different HRTs (12, 24 and 36 hours). Different fouling behaviors were found as the HRT changed, which was confirmed by continuously monitoring the transmembrane pressure (TMP) and by measurements in the biomass and its algal organic matter (AOM) properties. Lowering the HRT resulted in higher fouling rates due to changes in the biomass and AOM properties. Higher HRTs led to lower fouling rates and to a lower organic rejection across the membrane. The retention of small-MW organics in SMPBR12h was found to exacerbate the fouling resistance, whereas the accumulation of large-MW biopolymers enhanced the rejection of organics, despite of not imparting significant resistance in SMPBR24h.
In order to assess the impact of different physical fouling control strategies, namely relaxation, backwash and air scouring, OCT in-situ monitoring was employed in MPBR12h to provide real-time information of the fouling layer properties (thickness and relative roughness) and its interaction with the membrane surface. Different fouling mechanisms were observed under different fouling control strategies. MPBRRLX and MPBRBW presented similar fouling rates despite of the lower permeate productivities of the latter. The lowest fouling rates were observed in MPBRSC, where stronger interactions between the membrane and small-MW organics and particles was observed.
|
Page generated in 0.0495 seconds