21 |
The Chemoselective, Enantiospecific Cross-Coupling of Secondary Boronic Esters and the Stability of Mesoporous Silica Supports for Pd CatalysisGLASSPOOLE, BEN WILLIAM 19 September 2011 (has links)
The Suzuki-Miyaura Cross-Coupling of aryl halides and aryl boronic esters has become one of the most important and oft used C-C bond forming reactions in industry and academia alike. Recently, substantial effort has been invested in expanding this reaction to include alkyl boronic esters as coupling partners, though until recently, success has been limited to primary alkyl boronic esters. Secondary alkyl boronic esters, with the inherent possibility of being chiral, have proven to be more difficult to couple. As a means of expanding our program on the enantio- and regioselective hydroboration of styrene derivatives, we sought to develop conditions that could couple benzylic (secondary) boronic esters. Not only was the coupling to aryl iodides achieved in moderate to good yield with a commercially available (and relatively cheap) catalyst system and phosphine, but the coupling reaction proceeds with almost complete retention of the stereochemistry installed during the hydroboration reaction. Interestingly, these conditions leave primary (linear) alkyl boronic esters completely untouched. Further examination of the chemoselectivity of the reaction revealed that, despite being unable to cross-couple strictly aliphatic secondary boronic esters, our silver-mediated protocol was able to effectively cross-couple chiral allylic boronic esters in high yield and good regioselectivity.
The asymmetric syntheses of novel secondary boronic esters have also been developed to overcome the substrate limitations of the hydroboration reaction. Together with our effective cross coupling strategy, these novel chiral boronic esters have led to
the synthesis of exciting new classes of molecules, most notably, the asymmetric triarylmethanes.
Finally, the stability of mesoporous silica supports used in Pd catalysis was assessed. Though silica supports effectively reduce Pd-contamination in reaction mixtures to sub-ppm levels, their long-term reusability is hindered by material degradation caused by harsh reaction conditions. It was found that aqueous base, required for the Suzuki-Miyaura reaction, is responsible for silica degradation and the collapse of mesostructure. Interestingly, it was determined that the reaction itself had a protective effect on the material, with the boric acid side-product mitigating the deleterious effect of the base. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-09-19 14:53:49.444
|
22 |
Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported NanoparticlesWalker, Michael 17 December 2013 (has links)
The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions.
Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.
|
23 |
Synthesis and Applications of Novel Periodic Mesoporous OrganosilicasChun Xiang (Cynthia) Lin Unknown Date (has links)
Synthesis and Applications of Novel Periodic Mesoporous Organosilicas by Chun Xiang (Cynthia) LIN Abstract This dissertation is concerned with the synthesis, functionalization, and applications of periodic mesoporous organosilica (PMO) with a unique hollow spherical morphology, with the main objectives as follows: • Developing new techniques to synthesize mesoporous silica and organosilica materials • Designing different approaches to modify PMO and silica materials to meet various applications • Developing innovative applications of novel PMO materials in biological fields. The key features that have been achieved in this work are highlighted as follows: • A series of studies has been carried out and resulted in a new strategy for the synthesis of PMO material with a novel hollow morphology. This new approach employs both hydrocarbon and fluorocarbon surfactants as mixed structure-directing-agents in alkaline medium. Moreover, a vesicle and liquid crystal "dual-templating" mechanism has been proposed. • Detailed observation on the formation mechanism of hollow PMO has revealed that the demixing temperature (Td) plays an important role on the formation of highly ordered mesostructure of PMO hollow spheres. Beside that, dissimilarity on the hydrophobic nature of silica - organic silica precursors has brought differences in the resulted materials. • Different approaches in the modification of PMO hollow spheres with several functional groups and commercial magnetic ferrite nanoparticles have shown some unique features of this material. It was found that different reactive sites of each functional group bring different disruptive effect on the mesopore geometry of hollow PMO. Furthermore, hollow PMO material show different behavior on encapsulating the commercial magnetic ferrite nanoparticles compared to superparamagnetic particles, where different techniques should be applied, which involved several factors that need to be carefully adjusted. • Applications of hollow PMO in biological field were performed on drug and DNA delivery. A comparison between periodic mesoporous silica (PMS) and PMO as drug carriers showed the differences in wall composition between pure silica and hybrid organic silica, also the morphology (hollow and solid spheres) play important roles in controlling adsorption capacity and drug release rate. In addition, different pH value of release medium also brings significant effect on release profile. As a carrier of DNA, magnetic modified hollow PMO material showed biocompatibility towards sugarcane callus. Moreover, this study has introduced a new innovative technique on delivering DNA into plant cell through the application of modified hollow PMO with barium magnetic core and enzyme digestion approach.
|
24 |
Híbridos inorgânico-orgânicos nanoestruturados de sílica mesoporosa e filossilicatos - energética da remoção de cátions na interface sólido/líquido / Nanostructured inorganic-organic hybrids based on mesoporous silica and phyllosilicates - energetics of cations removal at the solid/liquid interfaceBadshah, Syed 17 August 2018 (has links)
Orientador: Claudio Airoldi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-17T19:54:52Z (GMT). No. of bitstreams: 1
Badshah_Syed_D.pdf: 4398020 bytes, checksum: 41352eaf93af6ab6efa1bf20fb83ffd9 (MD5)
Previous issue date: 2011 / Resumo: No presente trabalho, híbridos inorgânico-orgânicos nanoestruturados de sílica mesoporosa e de filossilicatos de magnésio lamelares com estrutura similar ao talco foram sintetizados e caracterizados. A máxima capacidade sorptiva de cátions dos híbridos e as características energéticas das interações dos cátions com centros básicos, na interface sólido/líquido, foram também estudadas. A sílica mesoporosa análoga aos materiais SBA-15 tem sido sintetizada por meio do tribloco co-polímero EO20-PO70 -EO20 (P123 - Pluronic®), que atua como um agente direcionador estrutural. Os materiais SBA-15 sintetizados foram funcionalizados com vários agentes sililantes, os quais apresentam os seguintes grupos funcionais: amida, nitrila e marfolina ou base de Schiff do anel tiofênico. Os agentes sililantes com os grupos funcionais mencionados acima foram sintetizados por meio de reações de adição de Michael do aceptor de Michael a,b - insaturado (acrilamida, acrilonitrila e 4- acriloilmarfolina), ou por meio da reação de base de Schiff do 2-tiofenocaboxaldeído com os agentes sililantes aminados, comercialmente disponíveis. As técnicas de espalhamento de raios X a baixa ângulo (SAXS) e de adsorção/desorção de nitrogênio para a SBA-15 pura e a SBA-15 funcionalizada mostraram um arranjo estrutural hexagonal bem-ordenado nos materiais. Os filossilicatos lamelares híbridos com diferentes porções orgânicas presentes dentro dos nanoespaços lamelares foram sintetizados por meio de reações sol-gel de uma única etapa. Com esse intuito, os agentes sililantes com vários grupos funcionais (tiopropanamida, tiocarbamato, nitrila e base de Schiff ou anel tiofênico) foram sintetizados e reagiram com uma solução metanólica de nitrato de magnésio, sob condições básicas. A difratometria de raios X indicou distâncias basais maiores de que 1 nm para os filossilicatos híbridos sintéticos. A técnica de difração de raios X também mostrou que a estrutura inorgânica dos filossilicatos híbridos era similar àquela do talco natural. A estrutura inorgânica do filossilicato híbrido é composta de camadas octaédricas ocupadas pelo átomo de magnésio hexacoordenado presentes entre duas camadas tetraédricas silícicas, em que a porção orgânica está covalentemente ligada à camada tetraédrica da estrutura em camadas. A integridade das porções orgânicas ligadas à rede inorgânica da sílica mesoporosa ou dos filossilicatos foi confirmada por meio da Espectroscopia no Infravermelho com transformada de Fourier e por meio da técnica de Ressonância Magnética no estado sólido para os núcleos Si e C. A máxima incorporação de porções orgânicas foi determinada por meio da análise elementar. As porções orgânicas ligadas aos materiais híbridos contêm: nitrogênio, oxigênio e enxofre, os quais correspondem aos sítios básicos disponíveis para a remoção de espécies como: Pb, Cu, Cd e Ni. As capacidades sorptivas máximas dos materiais híbridos para tais cátions foram obtidas por meio de Isotermas de adsorção de Langmuir. Os resultados revelam que os filossilicatos lamelares híbridos apresentam elevada capacidade para remoção de cátions em comparação com os materiais SBA-15, devido ao elevado grau de funcionalização. A energética das interações entre os cátions e os centros básicos ao longo da interface sólido/líquido foram determinadas através da microcalorimetria. As variações negativas da energia de Gibbs, de entalpia e os valores positivos de variação entrópica indicam interações espontâneas e favoráveis entre os sólidos e os íons metálicos. Esses resultados favoráveis indicam que os híbridos sintetizados podem ser úteis na remoção de cátions tóxicos de soluções aquosas, auxiliando na despoluição de ecossistemas / Abstract: In the present work, nanostructured inorganic-organic hybrids based on mesoporous silica and lamellar magnesium phyllosilicates with talc-like structure were synthesized and characterized. The maximum cations sorption capacity of the hybrids and energetic features from cation- basic center interactions at the solid liquid interface were also studied. The mesoporous silica analogous to SBA-15 materials has been synthesized through the triblock co-polymer EO20-PO70 -EO20 (P123 ¿ Pluronic®) as a structured directing agent. The synthesized SBA-15 materials were functionalized with various silylating agents having organic functional groups of amide, nitrile, and marpholine or Schiff base of thiophenic ring. The silylating agents with the aforementioned functional groups were synthesized either by the Michael addition reactions of a,b-unsaturated Michael acceptor (acrylamide, acrylonitrile and 4-acryloylmarpholine) or by the Schiff base reaction of 2-thiophenecaboxaldehyde with commercially available aminated silylating agents. Small angle X-ray scattering (SAXS) and nitrogen adsorption/desorption experiments for both SBA-15 and functionalized SBA-15 showed well-ordered hexagonal array structure. The lamellar phyllosilicates hybrids with different organic moieties inside the lamellar nanospaces were synthesized through a single step sol-gel reaction. For this purpose, silylating agents with various functional groups (thiopropanamide, thiocarbamate, nitrile and Schiff base of thiophenic ring) were synthesized and reacted with methanolic solution of magnesium nitrate under basic conditions. The X-ray diffraction showed basal distances of more than 1 nanometer for the synthetic hybrid phyllosilicates. The XRD also showed that the inorganic structure of the hybrid phyllosilicates was similar to that of natural talc. The inorganic network of the hybrid phyllosilicate is composed of octahedral sheet occupied by hexacoordinated magnesium atom sandwiched between two tetrahedral silicic sheets, and the organic moiety is covalently bonded to the tetrahedral sheet of the layered structure. The integrity of organic moieties attached to the inorganic network of mesoporous silica or phyllosilicates was confirmed by the Fourier transform infrared spectroscopy and nuclear magnetic resonance in the solid-state for the Si and C nuclei. The maximum incorporation of organic moieties was determined through elemental analysis. The attached organic moieties of the hybrid materials contain nitrogen, oxygen or sulfur basic centers available for divalent lead, copper, cadmium and nickel cation removal. The maximum sorption capacities of the hybrids for such cations were obtained through Langmuir adsorption isotherms. The results reveal that the lamellar magnesium phyllosilicate hybrids present high capacity for cations removal as compared to functionalized SBA-15 materials, due to a high degree of functionalization. The energetic of cation-basic centers interactions at the solid/liquid interface were determined through microcalorimetry. The negative Gibbs energy, exothermic enthalpy and positive entropic values indicate spontaneous and favorable interactions between the solids and metal ions. These favorable results indicated that the synthesized hybrids can be useful for removal of toxic cations from aqueous solutions for the improvement of ecosystem / Doutorado / Quimica Inorganica / Doutor em Ciências
|
25 |
Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported NanoparticlesWalker, Michael January 2014 (has links)
The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions.
Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.
|
26 |
Filossilicatos de magnesio e silicas mesoporosas organofuncionalizados para o uso na remoção de corantes industriais / Organofunctionalized magnesium phyllosilicates and mesoporous silicas for use in industrial dyes removalMoscofian, Andrea Sales de Oliveira 06 October 2009 (has links)
Orientador: Claudio Airoldi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-14T14:21:13Z (GMT). No. of bitstreams: 1
Moscofian_AndreaSalesdeOliveira_D.pdf: 1968679 bytes, checksum: b66014bf3fdc4c05b9755eac5d6d6ef0 (MD5)
Previous issue date: 2009 / Resumo: Filossilicatos de magnésio e sílicas mesoporosas, com grupos orgânicos ligados às estruturas poliméricas inorgânicas, foram estudados na remoção de corantes. Para a síntese dos materiais nanoestruturados organofuncionalizados foram empregados agentes sililantes, (H3CO)3Si-R1, em que R1 é a cadeia carbônica contendo grupos funcionais: 3-aminopropiltrimetoxissilano, cloreto de octadecildimetil(3-trimetoxissilil-propil)amônio, 3-mercaptopropiltrimetoxissilano, 3-etilenodiaminopropiltrimetoxissilano e 3-dietilenotriaminopropiltrimetoxissilano. Através do processo sol-gel foram obtidos filossilicatos com estruturas inorgânicas similares àquelas dos silicatos lamelares naturais e sílicas mesoporosas empregando-se o surfatante CTAB como direcionador da estrutura inorgânica. As moléculas pendentes nos poros dos novos materiais com cargas positivas ou protonadas interagiram com as cargas negativas dos corantes utilizados na indústria têxtil: amarelo reativo GR, vermelho reativo RB e azul reativo RN. O estudo de adsorção mostrou que o filossilicato contendo cloreto de octadecildimetil(3-trimetoxissilil-propil)amônio, Fil-COTA, foi o material que apresentou a maior capacidade de adsorção, 1343 mg gpara o corante amarelo GR, 1286 mg g para o azul reativo RN e 344 mg gpara o vermelho reativo RB. Também foram realizados testes em amostras reais de efluente têxtil. Os resultados mostraram que não é necessário ajustar o pH inicial, a saturação do material ocorre após 3 h, sendo necessária uma massa mínima de 2,5 g dm de Fil-COTA. Portanto, este material é promissor no tratamento de efluentes têxteis reais. / Abstract: Magnesium phyllosilicates and mesoporous silicas, with organic groups anchored onto an inorganic polymeric backbones were studied for dye removal. In the synthesis of the organofunctionalized nanostructured materials, the silylanting agents, (H3CO)3Si-R1, where R1 represents carbonic chain containing functional groups: 3-aminopropyltrimethoxysilane, octadecyl (3-trimethoxysylilpropyl)ammonium chloride, 3 ¿ mercaptopropyltri-methoxysilane, 3-ethylenediaminetrymethoxysilane and 3-diethy-lenetriaminetrymethoxysilane were employed. The sol-gel process was used and phyllosilicates with inorganic lamellar structures similar to those of natural silicate and mesoporous silicas were obtained using the surfactant CTAB as template to direct inorganic structure in the latter case. The pendent molecules in pores of the new material with positive charge interact with the negative charge of the dyes used in the textile industry: reactive yellow GR, reactive red RB and reactive blue RN. The adsorption study showed that the phyllosilicate containing octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride, Fil-COTA, presented the highest adsorption capacity, 1343 mg g for reactive yellow GR, 1286 mg g for reactive blue RN and 344 mg g for reactive red RB. Real samples of textile effluents were also tested. The results showed that it is not necessary to ajust the inicial pH, surface saturation occurs after 3 h and the minimum mass necessary is 2,5 g dm of Fil-COTA. Thus, this is a promising material for textile effluent treatement. / Doutorado / Quimica Inorganica / Doutor em Ciências
|
27 |
MODIFIED ORDERED MESOPOROUS SILICA MEMBRANES FOR CO <sub>2</sub> -N <sub>2</sub> SEPARATIONKIM, SANGIL January 2003 (has links)
No description available.
|
28 |
Immobilized diimine complexes of palladium and copper as catalyst precursors for oxidation reactionsKotze, Hendrik de Vries 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: In this thesis the synthesis of a wide range of model and siloxane functionalized
N-(n-propyl)-1-(2-pyridyl and quinolyl)-imine ligands (L1-L6) are described.
Functionalized ligands (L4-L6) were obtained by the reaction of the pyridyl and quinolyl
aldehydes with 3-aminopropyltriethoxysilane. Model ligands were characterized by
FT-IR and 1H NMR spectroscopy while 13C{1H} NMR spectroscopy was additionally used
for functional ligand characterization. Functionalized complexes of both Pd(II) and Cu(I)
were found to be more thermally stable than their model counterparts. Overall the
model Pd(II) complexes showed a higher thermal stability than the model Cu(I)
complexes.
Ligands (L1-L6) were reacted with either Pd(II) or Cu(I) metal precursors to produce
both the model and functionalized Pd(II) (C1-C6) and Cu(I) (C7-C12) metal complexes.
These metal complexes were all characterized by FT-IR spectroscopy, 1H NMR and
UV/Vis spectroscopy for the model Cu(I) complexes. Functionalized complexes were
additionally characterized with 13C{1H} NMR spectroscopy.
Siloxane functionalized complexes of Pd(II) and Cu(I) were immobilized on MCM-41 and
SBA-15 silica materials to produce heterogenized immobilized catalysts. These
immobilized catalysts were characterized by a wide range of solid state techniques
including: BET nitrogen adsorption/desorption, scanning electron microscopy (SEM),
thermal gravimetric analysis (TGA), ICP-AES, FT-IR spectroscopy, powder XRD and
solid state 13C{1H} NMR spectroscopy. ICP-AES and BET surface analysis showed that
better complex immobilization occurred for SBA-15 supported materials despite SBA-15 having a significantly lower surface area than MCM-41. This higher immobilization was
ascribed to the larger pore sizes of SBA-15 (50 Å) vs. that of MCM-41 (26 Å).
Immobilized catalysts were tested for the oxidation of benzyl alcohol to benzaldehyde.
Immobilization had a positive effect on the catalytic activity of the Pd(II) complexes with
higher conversions being observed for immobilized Pd(II) catalysts when compared to
their model analogues. Overall the MCM-41 immobilized Pd(II) catalysts showed a
higher increase in activity than SBA-15 immobilized catalysts. For Ti-doped supports a
generally higher activity was seen for the Ti-SBA-15 system. The Cu(I) systems
however were not as effective in the oxidation reactions. / AFRIKAANSE OPSOMMING: In hierdie tesis word die sintese van `n wye reeks model sowel as gefunksioneerde
N-(n-propiel)-1-(2-piridiel en kinoliel)-imien ligande (L1-L6) beskryf. Gefunksioneerde
ligande (L4-L6) is gevorm deur die reaksie van piridiel en kinoliel aldehied met
3-amniopropieltriëtoksiesilaan. Model ligande is gekaraktariseer deur FT-IR en 1H KMR
spektroskopie terwyl 13C{1H} KMR spektroskopie addisioneel gebruik is vir die
karaktarisering van die gefunksioneerde ligande.
Ligande (L1-L6) is gereageer met Pd(II) of Cu(I) metaal voorgangers om beide model
sowel as gefunksioneerde Pd(II) (C1-C6) en Cu(I) (C7-C12) metaal komplekse op te
lewer. Hierdie metaal komplekse is almal gekaraktariseer deur FT-IR, 1H KMR en
UV/Vis spektroskopie vir die model Cu(I) komplekse. Gefunksionalseerde komplekse is
addisioneel gekaraktariseer deur gebruik te maak van 13C{1H} KMR spektroskopie. Dit
is gevind dat gefunksionaliseerde komplekse van beide Pd(II) sowel as Cu(I) termies
meer stabiel was as hulle ooreenstemmende model komplekse. Oor die algemeen het
die Pd(II) komplekse hoër termiese stabiliteit as die Cu(I) komplekse getoon.
Siloksaan gefunksioneerde komplekse van Pd(II) en Cu(I) is geimmobiliseer op MCM-41
en SBA-15 silika materiale om heterogene geimmobiliseerde katalisatore op te lewer.
Hierdie geimmobiliseerde katalisatore is gekaraktariseer deur van `n wye reeks vaste
toestand tegnieke gebruik te maak. Hierdie suit in: SEM, TGA, ICP-AES, FT-IR, poeier
XRD en vaste toestand 13C{1H} KMR spektroskopie. ICP-AES en BET oppervlak
analieses het getoon dat beter kompleks immobilisering vir die SBA-15 silika material
plaas gevind het, ondanks die feit dat SBA-15 `n laer oppervlak area beskik. Hierdie hoër graad van immobilisering is toegeskryf aan die groter poriegrootte van SBA-15 (50
Å) teenoor die van MCM-41 (26 Å).
Geimmobiliseerde katalisatore is getoets in die oksidasie van bensielalkohol na
bensaldehied. Dit is gevind dat die immobilisering van die Pd(II) komplekse op die silika
materiaal `n positiewe uitwerking op die aktiwiteit van die katalitiese van die komplekse
gehad het. Die hoogste toename in aktiwiteit is gesien vir geimmobiliseerde Pd(II)
katalisatore wanneer hulle met hul ooreenstemmende model komplekse vergelyk is.
Oor die algemeen is gevind dat MCM-41 geimmobiliseerde Pd(II) katalisatore n hoër
toename in aktiwiteit getoon het as die van SBA-15. Vir die Ti-gedokterde silika
materiale het die Ti-SBA-15 sisteem oor die algemeen `n hoër aktiviteit getoon as die
Ti-MCM-41 sisteem. Die Cu(I) sisteme was egter nie so effektief in oksidasie reaksies
nie.
|
29 |
PORE ENGINEERING OF SURFACTANT TEMPLATED NANOPOROUS SILICA USING SUPERCRITICAL CARBON DIOXIDEGhosh, Kaustav 01 January 2007 (has links)
The use of compressed CO2 processing to alter the pore size, structure and timescale of silica condensation in surfactant templated silica thin films and powders is investigated by systematically varying the template structure and CO2 processing conditions. Tailoring the mesoporous materials increases its potential applications, as demonstrated in catalysis, drug delivery, chromatographic and electrode applications. This work demonstrates for the first time the applicability of fluorinated surfactants as templates for the synthesis of mesoporous silica thin films by dip coating. Well-ordered films with 2D hexagonal close-packed pore structure are synthesized in an acid-catalyzed medium using three cationic fluorinated templates of varied tail length and branching (C6F13C2H4NC5H5Cl, C8F17C2H4NC5H5Cl and (CF3)2CFC5F9C2H4NC5H5Cl). CO2 processing of the fluorinated templated silica results in a significant and controlled increase in pore diameter relative to the unprocessed films. The pore expansion is significantly greater compared to the negligible expansion observed in hydrocarbon (C16H23NC5H5Br) templated silica. The greater swelling of the fluorinated templates is attributed to the favorable penetration of CO2 in the CO2-philic fluorinated tail and the relative solvation of each template is interpreted from their interfacial behavior at the CO2-water interface. The CO2 based pore expansion observed in fluorinated surfactant templated films is extended successfully to base-catalyzed silica powders templated with a fluorinated surfactant (C6F13C2H4NC5H5Cl). Pore expansion in silica powders is significantly less than in acid catalyzed films and demonstrates the effects of pH on surfactant selfassembly in CO2 and increased silica condensation at basic conditions, which inhibits pore expansion. Finally, the use of fluorescence probe molecules is demonstrated for in-situ monitoring of the of CO2 processing of surfactant templated silica films to provide time dependent data on the local environment and dynamics of CO2 penetration. CO2 uptake occurs in surfactant tails even for hydrocarbon templates (C16H23N(CH3)3Br and C16H23NC5H5Br), which display negligible CO2 based swelling of the resulting pores. The timescale of silica condensation increases significantly in the presence of CO2 suggesting opportunities for structure alteration through application of external forces, such as magnetic fields and change in substrate chemistry and system humidity
|
30 |
The role of water properties and specific ion effects on the evolution of silica nanoconfinement / Le rôle des propriétés de l'eau et des effets spécifiques des ions sur l'évolution du nanoconfinement de la siliceBaum, Markus 09 November 2018 (has links)
Dans cette thèse, les propriétés de l'eau en présence d'ions dans des nanoconfinement à base de silice ont été étudiées. L'objectif principal est de relier ces propriétés à l'évolution des matériaux mésoporeux de silice dans les solutions aqueuses. Pour atteindre cet objectif, nous avons utilisé une approche originale consistant à remplir avec des solutions électrolytiques comportant des ions ayant des propriétés kosmotropes différentes, XCl2 (X = Ba, Ca, Mg) des systèmes modèles tels que deux surfaces de silice parallèles et planes espacées de 3 et 5 nm (nanocanaux) et des silices à mesoporosité ordonnée comme les silices SBA-15 (6 nm de taille pores et murs des pores microporeux) et MCM-41 (3 nm de taille de pores et murs des pores denses).Les résultats obtenus indiquent que la cinétique de remplissage des nanocanaux dépend de la taille du confinement, de la nature des ions et de la solubilité des sels associés aux électrolytes. Dans certains cas, le remplissage incomplet des nanocanaux peut s'expliquer par une diminution de la dynamique de l'eau associée à l’atteinte de la saturation vis-à-vis des sels XCl2 dans la couche interfaciale. La possible précipitation de phases XCl2 pourrait permettre d’expliquer le bouchage de certains nanocanaux. Par la suite, les propriétés de l'eau dans des nanoconfinement concave de silice tels que les cylindres ont également été étudiées. La structure de l’eau en présence d’ions et sa dynamique à l’échelle de la picoseconde caractérisées respectivement par FTIR-ATR et diffusion quasi élastique des neutrons, ont été analysées. Les résultats suggèrent que les propriétés structurales et dynamiques de l'eau sont fortement influencées par la taille du confinement, le caractère kosmotrope des ions et l'excès d'ions dans la couche interfaciale.Enfin, nous avons déterminé l’évolution des deux silices mésoporeuses dans des solutions électrolytiques par diffusion des rayons X aux petits angles. Pour une taille de pore de 3 nm et des murs de pores denses (MCM-41), une dynamique de l’eau lente à une échelle picoseconde conduit probablement à une sursaturation des ions dans la couche interfaciale et donc à une reprécipitation des sels XCl2 et / ou de la silice plus stable. Dans ce cas, l'évolution du MCM-41 est induite par un processus de dissolution-recondensation / précipitation. Dans les plus grands mésopores du SBA-15, en raison de la microporosité dans la paroi des pores, le processus d'altération est différent. Dès le début, une couche d'altération se forme et la taille des pores augmente jusqu'à saturation de la silice. Par la suite, un processus de recondensation / précipitation similaire à celui observé dans la MCM-41 se produit dans la microporosité. Ces deux types d'évolutions en silice pourraient persister jusqu'à l'obtention d'une phase de silice thermodynamiquement stable. / In this study, we investigated the water properties in the presence of ions in silica nanoconfinement. The main objective is to relate these water properties to the evolution of silica mesoporous materials in aqueous solutions. To reach this goal, we used an original approach, consisting in the use of electrolyte solutions having ions with various kosmotropic property XCl2 (X = Ba, Ca, Mg) confined in model systems such as two parallel and plane silica surfaces spaced of 3 and 5 nm (nanochannels) and highly ordered mesoporous silica materials represented by SBA-15 (6 nm pore size and microporous pore wall) and MCM-41 (3 nm pore size and dense pore wall).The obtained results indicate that the filling kinetics in nanochannels is driven by the size of the confinement, the nature of ions and the salt solubility of electrolytes. In some cases, the incomplete filling of the nanochannels may be explained by a decrease of water dynamics associated to the saturation of XCl2 salts into the interfacial layer. The possible precipitation of XCl2 phases may explain an incomplete filling by a nanochannels clogging.Thereafter, the water properties in nanoconfinement made of silica concave surface such as cylinders were studied. The water structure and dynamics at a picosecond scale in presence of ions were respecteively characterized by infrared spectroscopy and quasi-elastic neutron scattering. The results suggest that the structural and dynamical water properties are strongly affected by the size of the confinement, the kosmotropic properties of ions and the surface ion excess in the interfacial layer.Finally, we characterized the evolution of the two mesoporous silica in electrolyte solutions using in-situ small-angle X-ray scattering. For 3 nm pore size and dense pore wall (MCM-41), the slow dynamics at a picosecond scale probably lead to a supersaturation of ions in the interfacial layer and thus, to a reprecipitation of XCl2 salts and/or silica phases. In that case, the evolution of the MCM-41 is driven by a dissolution-recondesation/precipitation process. In the bigger mesopores of SBA-15, due to the microporosity in the pore wall, the alteration process is different. During a first stage, an alteration layer is formed and the pore size increases until the silica saturation. Afterwards, a similar recondensation/precipitation process as observed in MCM-41 occurs into the microporosity. These two types silica evolutions could persist until the formation of a thermodynamic stable silica phase.
|
Page generated in 0.0321 seconds