• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 19
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 115
  • 47
  • 35
  • 34
  • 30
  • 28
  • 27
  • 25
  • 24
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Captação de uma emulsão lipídica semelhante a LDL por fragmentos vasculares e pericárdio de pacientes submetidos a cirurgia de revascularização miocárdica / Uptake of a cholesterol-rich emulsion resembling LDL by vessel\'s fragments and pericardium of patients undergoing myocardial revascularization

Ricardo David Couto 08 February 2002 (has links)
A doença arterial coronária (DAC) tem sido a maior causa de morte por doenças nos paises ocidentais. Existem vários fatores responsáveis pela iniciação e progressão desta doença - fatores ambiental ou genético. Muitos fatores de risco para a DAC estão relacionados a alterações do metabolismo lipídico, como acúmulo de lipoproteína de baixa densidade (LDL) no plasma seguida da deposição da lipoproteína na parede arterial. Recentemente, foi demonstrado que uma emulsão rica em colesterol que se assemelha a composição lipídica da LDL liga-se aos receptores que captam a lipopoteína da circulação e internalizam-na no citoplasma. A emulsão, denominada LDE, é feita sem proteína mas quando injetada na circulação sangüínea adquire várias apolipoproteínas (apo) como apo E que pode ser reconhecida pelo receptor de LDL. A apo E tem mais afinidade pelo receptor do que a apo B, a apo que liga a LDL nativa ao receptor. No presente estudo, para esclarecer o processo metabólico que a LDL enfrenta no plasma e o processo de captação da lipoproteína pelos vasos, a LDE marcada com colesterol livre-3H (CL) e oleato de colesterol-14C (CE) foi injetada em 10 pacientes portadores de DAC (57 ± 2,2 anos) submetidos à cirurgia de revascularização miocárdica. Amostras de sangue foram coletadas em intervalos de tempo pré-determinados. A radioatividade presente nas alíquotas de plasma foi determinada por cintilação líquida e a taxa fracionai de remoção (TFR) calculada por análise compartimental. Os fragmentos dos enxertos de aorta, artérias radial e torácica interna, veia safena e pericárdio removidos durante o procedimento cirúrgico foram coletados para extração lipídica, separação por cromatografia de camada delgada e quantificação radioativa. A remoção plasmática do CE da LDE foi similar a do CL da LDE (0,0617 ± 0,0087 vs 0,0528 ± 0,0123, p = 0,5635, respectivamente). A captação do CL da LDE foi maior do que a do CE da LDE na aorta (21% vs 3,1%, p = 0,0049), artéria torácica interna (10,3% vs 2%, p = 0,0007) e veia safena (8% vs 2%, p = 0,0326). Nos fragmentos de artéria radial (14,4% vs 4,3%) e de pericardio (2,2% vs 0,3%), a captação do CL tendeu ser maior do que a captação do CE, porém não foi estatisticamente confirmado. A taxa de esterificação foi maior nos fragmentos de aorta, de toráxica interna e de pericárdio do que nos fragmentos de veia safena (p < 0,001). Concluindo, a LDE foi captada pelos vasos e pericardio em quantidades concideráveis e a captação do CL pelos tecidos foi maior do que a do CE. Ainda, a taxa de esterificação do colesterol livre foi mais intensa nos fragmentos de aorta e torácica interna do que nos fragments de veia safena. / Coronary artery disease (CAD) is the main mortality cause in western countries. There are many factors responsible for the onset and progression of the disease - either environmental or genetic. Many risk factors in CAD are related with disorders of lipid metabolism, such as accumulation of low-density lipoprotein (LDL) in the plasma with deposition of the lipoprotein in the arterial wall. Recently, it was shown that a cholesterol-rich emulsion that mimics the lipid composition of LDL binds to the receptors that take-up the lipoprotein from the circulation and internalizes it into the cytoplasm. The emulsion, denominated LDE, is made without protein but when injected into the bloodstream it picks-up several apolipoproteins (apo) such as apo E that can be recognized by the LDL receptor. Apo E has even more affinity for the receptor than apo B, the apo that binds native LDL to the receptors. In the current study, aiming to clarity the metabolic processes that LDL undergoes in the plasma and the process of lipoprotein uptake by the vessels, LDE labeled with 3H- Cholesterol (CL) and 14C-Cholesteryl Oleate (CE) was injected into 10 CAD patients (57 ± 2,2 yr.) scheduled to be submitted to myocardial revascularization surgery. Blood samples were collected over 24 hour at pre-established intervals. Radioactivity present in plasma aliquots was determined in a scintillation solution and the fractional clearance rate (FCR) was calculated by compartimental analysis. The gratt\'s fragments of aortic, radial, internal thoracic arteries, safenous vein and pericardium discarded during the surgical procedure were collected for lipid extraction, separation by thin layer chromatography and radioactive counting. The removal from plasma of the LDE CE was similar to that of the LDE CL (0,0617 ± 0,0087 vs 0,0528 ± 0,0123, p = 0,5635, respectively). The uptake of LDE CL was greater than that of LDE CE in aorta (21% vs 3,1%, p = 0,0049), internal toracic artery (10,3% vs 2%, p = 0,0007) and safenous vein (8% vs 2%, p = 0,0326). In the radial artery (14,4% vs 4,3%) and pericardium (2,2% vs 0,3%) fragments, the CL uptake also tended to be greater than that of CE, but this was not statistically confirmed. The esterification rate was greater in the aorta, internal thoracic artery and pericardium fragments than in safenous vein fragments (p < 0,001). In conclusion, LDE was taken-up by vessels and pericardium at considerable amounts and LDE CL uptake by those tissues was greater than that of CE. In addition, the cholesterol esterification rate was more intense in the aorta and internal thoracic artery than in venous fragments.
52

Rôle de l'apeline dans le contrôle de l'axe "intestin-hypothalamus-périphérie" : conséquences sur le métabolisme glucidique chez la souris normale et obèse/diabétique / Role of apelin on "gut-to brain-to peripheral" axis : consequences in the control of glucose metabolism in normal and obese/diabetic mice

Fournel, Audren 29 June 2016 (has links)
Au début de ce doctorat, plusieurs études avaient identifié l'intestin grêle, siège de l'absorption du glucose, en tant que premier organe impliqué dans le contrôle de l'homéostasie glucidique lors d'un repas. En particulier, il a été démontré que la détection entérique de glucose permettait d'impacter son utilisation par le muscle et le foie, via un relai central impliquant une libération hypothalamique de monoxyde d'azote (NO). De plus, notre groupe a également démontré qu'une altération de la détection entérique du glucose, associée à une réponse neuronale hypothalamique anormale, participait à la mise en place d'un Diabète de Type 2 (DT2). En plus de ces problèmes de détection de nutriments, les patients obèses et diabétiques souffrent de troubles de la motilité intestinale (en particulier d'une hypercontractilité intestinale), liés à une atteinte du Système Nerveux Entérique (SNE). En effet, ce dernier est constitué d'environ 600 millions de neurones interconnectés chez l'Homme, contrôlant les contractions des muscles lisses intestinaux. D'un point de vue régulation, le SNE communique en permanence avec le Système Nerveux Central (SNC) via des voies nerveuses afférentes et efférentes. L'équipe s'intéresse au rôle de l'apeline en tant que nouvelle cible thérapeutique potentielle pour traiter le DT2. En particulier, notre équipe a récemment montré que l'apeline était libérée par les entérocytes dans la partie proximale de l'intestin, et qu'à ce niveau elle contrôlait l'absorption intestinale du glucose. Cependant, le fait que l'apeline puisse également cibler les neurones du SNE, et donc moduler la contractilité intestinale, n'était pas encore démontré. Lors de ce travail de thèse, nous avons ainsi pu montrer qu'en fonction de sa concentration, l'apeline activait des populations neuronales entériques différentes provoquant une stimulation ou, au contraire, une inhibition des contractions duodénales. La stimulation de cette contractilité duodénale par de faibles concentrations d'apeline entraîne une augmentation de l'absorption intestinale de glucose, mais également une diminution de la libération de NO hypothalamique, aboutissant à une moindre utilisation de ce dernier par le muscle squelettique. A l'inverse, de fortes concentrations d'apeline sont associées à une diminution de cette activité duodénale, entraînant un retour de l'ensemble de ces paramètres à des niveaux contrôles. Dans un second temps, nous avons voulu tester si cette motilité duodénale pouvait être considérée comme une cible thérapeutique pour traiter le DT2. Pour cela, nous avons effectué un traitement oral quotidien, pendant une semaine, avec la concentration d'apeline capable de diminuer l'activité duodénale, chez des souris obèses-diabétiques. Cette stimulation chronique par l'apeline permet de restaurer la contractilité duodénale de ces souris diabétiques au même niveau que celle de souris saines. De plus, cet effet est associé à une amélioration de leur tolérance au glucose ainsi que leur index de résistance à l'insuline. Ainsi, ce doctorat a permis de décrire un nouveau mode de communication entre l'intestin et le cerveau dans le contrôle de l'homéostasie glucidique. En effet, moduler les contractions duodénales en modifiant l'activité du SNE permettrait non seulement d'impacter l'absorption intestinale de glucose, mais également d'activer un axe duodénum-hypothalamus aboutissant au contrôle de l'utilisation périphérique de glucose. Dès lors, ce couplage " SNE-contraction duodénale " représenterait une cible thérapeutique prometteuse dans le traitement de maladies métaboliques telles que le DT2. / Prior to this PhD, several studies had determined that the small intestine, the site of glucose absorption, is the first organ involved in the control of glucose homeostasis during food intake. In particular, enteric glucose detection has been demonstrated to impact its utilization by muscles and liver, via a central relay involving hypothalamic nitric oxide (NO) release. Moreover, our group has also demonstrated that an alteration of enteric glucose detection, associated with an abnormal hypothalamic neuronal response, participates in type 2 diabetes (T2D) development. In addition to these defaults of nutrients detection, obese and diabetic patients suffer from intestinal motility disorders (in particular intestinal hypercontractility), linked to an alteration of the Enteric Nervous System (ENS). The ENS is composed of 600 million interconnected neurons in humans, known to control intestinal smooth muscles. The ENS permanently communicates with the Central Nervous System (CNS) via afferent and efferent nervous messages. Our team studies the role of apelin as a new potential therapeutic target to treat T2D. In this context, our group has recently demonstrated that apelin is released by the enterocytes in the proximal part of the intestine. At this site, apelin controls intestinal absorption of glucose. However, it hadn't been addressed yet whether apelin is also able to target enteric neurons, and consequently modulate intestinal contractility. During this PhD, we have highlighted that, depending of its concentration, apelin activates different enteric neuronal populations, leading to stimulation or, on the contrary, inhibition of duodenal contractions. Stimulation of this duodenal contractility by low concentrations of apelin causes an increase in intestinal glucose absorption, but also a decrease in hypothalamic NO release, leading to a reduced utilization of glucose by skeletal muscle. Conversely, high concentrations of apelin are associated with a decrease in the duodenal activity, leading to the restoration of all these parameters at basal levels. Then, we wanted to test whether duodenal motility could be considered as a therapeutic target to treat T2D. We performed a daily oral treatment, during one week, with the concentration of apelin able to decrease duodenal activity in obese and diabetic mice. We have shown that this chronic apelin treatment restores duodenal contractility in diabetic mice, at a similar level to that observed in normal mice. Moreover, this effect is associated with an improved glucose tolerance and insulin resistance index. Thus, this PhD describes a new mode of communication between the intestine and the brain, in the control of glucose homeostasis. Indeed, the modulation of duodenal contraction by targeting ENS activity could not only impact intestinal glucose absorption, but also activate a duodenum-hypothalamus axis, leading to the control of peripheral glucose utilization. Consequently, the "ENS-duodenal contraction" coupling could represent a promising therapeutic target to treat metabolic diseases such as T2D.
53

Experiences of Parents of Children Diagnosed with Inherited Metabolic Diseases (IMD) in Canada: Qualitative Description and Identification of Patient- and Family-Centred Outcomes

Siddiq, Shabnaz January 2016 (has links)
Objectives: The objectives of this thesis were to: (i) understand the experiences of parents/caregivers of children with inherited metabolic diseases (IMDs), including perceptions of the health care system; and (ii) identify important patient/family-centred outcomes for measurement in future studies. Methods: A qualitative study used semi-structured interviews to gain in-depth insight into caregivers’ experiences. In an adapted meta-synthesis study, the qualitative findings were integrated with the results of related research to identify priority outcomes. Results: Twenty-one caregivers were interviewed. Participants described adjusting to the management of their child’s illness through specific coping strategies but reported stress related to social development. While generally satisfied with disease-specific care, participants described negative experiences with non IMD-specific health services. Health-related quality of life, parental coping, and specific experiences with health care emerged as high-priority outcomes. Conclusions: This project contributes to the limited published literature on caregiver experiences with pediatric IMD and informs future patient-centred research.
54

Nanoparticles modulate lysosomal acidity and autophagic flux to rescue cellular dysfunction

Zeng, Jialiu 19 May 2020 (has links)
Autophagy is a critical cellular maintenance machinery in cells, and prevents the accumulation of toxic protein aggregates, organelles or lipid droplets through degradation via the lysosome. In macro-autophagy, autophagosome first engulfs around aggregates or cellular debris and subsequently fuses with a lysosome that is sufficiently acidic (pH 4.5–5.5), where the contents are then degraded via lysosomal enzymes. Autophagy inhibition as a result of lysosomal acidification dysfunction (pH > 5.5) have been reported to play a major role in various diseases pathogenesis. Hence, there is a pressing need to target lysosomal pH to rescue autophagy. Nanoparticles are attractive materials which has been shown to be efficiently uptaken into cellular organelles and can serve as an agent to specifically localize into lysosomes and modulate its pH. Lipotoxicity, induced by chronic exposure to free fatty acids, and exposure to neurotoxins (e.g. MPP+), elevates lysosomal pH in pancreatic beta cells (Type II Diabetes, T2D) and hepatocytes (Non-alcoholic fatty liver disease, NAFLD), and PC-12 cells (Parkinson’s Disease), respectively. We first tested the lysosome acidification capability of photo-activable nanoparticles (paNPs) and poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) in a T2D model. Both NPs lowered lysosomal pH in pancreatic beta cells under lipotoxicity and improved insulin secretion function. However, paNPs only release acids upon UV trigger, limiting its applicability in vivo, while PLGA NPs degrade upon lysosome localization. We further showed that PLGA NPs are able to rescue MPP+ induced cell death in a PD model, though it has a slow degradation rate. To attain the most efficacious nanoparticle with a fast degradation and acidification rate, we synthesized acidic nanoparticles (acNPs) based on tetrafluorosuccinic and succinic acids to form optimized nanoparticles. The acNPs showed faster rescue of cellular function compared to PLGA NPs in the PD model. Finally, we tested the acNPs in NAFLD model, and where lysosomal pH reduction by acNPs restored autophagy, reduced lipid accumulation, and improved mitochondria function in high-fat diet mice. In sum, nanoparticles are of potential therapeutic interest for pathologies associated with lysosomal acidity impairment. Future studies include testing the acNPs in NASH disease model and clinical studies. / 2022-05-18T00:00:00Z
55

Ethnic Differences in Risk Factors for Obesity Among Adults in California, the United States

Wang, Liang, Southerland, Jodi L, Wang, Kesheng, Bailey, Beth A, Alamian, Arsham, Stevens, Marc A., Want, Youfa 01 January 2017 (has links)
Little attention has been given to differences in obesity risk factors by racial/ethnic groups. Using data from the 2011-2012 California Health Interview Survey, we examined differences in risk factors for obesity among Whites, Latinos, Asians, and African Americans among 42,935 adults (24.8% obese). Estimates were weighted to ensure an unbiased representation of the Californian population. Multiple logistic and linear regression analyses were used to examine the differences in risk factors for obesity. Large ethnic disparities were found in obesity prevalence: Whites (22.0%), Latinos (33.6%), African Americans (36.1%), and Asians (9.8%). Differences in risk factors for obesity were also observed: Whites (gender, age, physical activity, smoking, arthritis, and diabetes medicine intake), Latinos (age, arthritis, and diabetes medicine intake), Asians (age, binge drinking, arthritis, and diabetes medicine intake), and African Americans (gender, physical activity, smoking, binge drinking, and diabetes medicine intake). Females were more likely to be obese among African Americans (odds ratio (OR) = 1.43, 95% confidence interval (CI) = 1.05–1.94), but less likely among Whites (OR = 0.80, 95% CI = 0.74–0.87). Race/ethnicity should be considered in developing obesity prevention strategies.
56

Infant Sleep Problems and Childhood Overweight: Effects of Three Definitions of Sleep Problems

Alamian, Arsham, Wang, Liang, Hall, Amber M., Pitts, Melanie, Ikekwere, Joseph 01 December 2016 (has links)
Sleep problems have been defined using a variety of definitions. No study has assessed the longitudinal association between infant sleep problems and childhood overweight or obesity using existing definitions of sleep problems. This study used longitudinal data (n=895) from the multi-site Study of Early Child Care and Youth Development (SECCYD) to investigate the effects of infant sleep problems on childhood weight status in Grade 6. Infants with sleep problems in Phase I (1991) and with complete data through Phase III (2004) of SECCYD were included. Sleep problems were assessed using maternal reports of night wakings and duration of a waking episode. Sleep problems were defined using Richman (1981), Lozoff et al. (1985), and Zuckerman et al. (1987) definitions. Multinomial logistic regression was used to examine the association between sleep problems during infancy and childhood weight status in Grade 6 while controlling for birth weight, race, sex, breastfeeding, maternal poverty, family structure, and maternal education. After adjusting for all covariates, children with a history of sleep problems were found to be overweight in Grade 6 using Zukerman et al. (Odds ratio (OR)=1.68; 95% confidence interval (CI): 1.11–2.55) and Richman (OR=1.76; 95% CI: 1.05–2.97) definitions, but not using Lozoff et al. definition. Infant sleep problems were not found to be associated with being obese. The study found differential effects of infant sleep problems on childhood overweight in Grade 6 per different definitions of sleep problems. Findings highlight the need to construct a single definition of infant sleep problems.
57

Improvement of Functional Bioactivity in Pear:Blackberry Synergies with Lactic Acid Fermentation for Type 2 Diabetes and Hypertension Management

Pucel, Nicholas W 01 January 2013 (has links) (PDF)
Type II diabetes mellitus (T2DM) is a chronic disease that has a worldwide prevalence which is expected to rise dramatically over the course of the next thirty years. The disease has reached pandemic stages of development in many cultures, most notably in developing countries, followed somewhat closely by developed countries with access to an overabundance of refined carbohydrates and fat (refined oils). T2DM is a condition that can be prevented or managed, but not cured; therefore a method of stymieing the development of this disease is paramount to halting its progressively increasing morbidity. In this study, bartlett pear and kiowa blackberry were investigated in relation to their ability to modify and improve both glucose metabolism and hypertension management with in vitro assay models. Effectiveness and bioactive functionality was evaluated by various in vitro assays to study the properties of: 100% bartlett pear juice, 100% kiowa blackberry juice and a ratio of 70:30 pear: blackberry juice found to have increased phenolic properties due to synergy in previous studies. These assays aimed at determining: alpha-amylase and alpha-glucosidase inhibition, angiotensin converting enzyme inhibition, total soluble phenolic content and antioxidant capabilities. These juices were also fermented with Lactobacillus helveticus and Bifidobacterium longum, common yogurt culture strains, to investigate if fermentation would improve the bioactive functionality of pear: blackberry synergies. A secondary goal of the experiment was to investigate if these fruit juices could prevent the growth of Helicobacter pylori, which is a common bacterium found in the stomach which can lead to cancer.
58

Effect of the Flavonoid Quercetin on Adipocytes

Swick, Jennifer C 01 January 2011 (has links) (PDF)
Obesity is an urgent global public health concern as prevalence rates continue to increase, especially among children. At the cellular level obesity is defined by an increase in adipocyte number (hyperplasia) and size (hypertrophy). Both lead to the dysfunction of adipose tissue, which has been identified as the link between obesity and chronic disease. Bioactive compounds, naturally occurring in fruits and vegetables, hold enormous potential in regulating adipocyte biology. Quercetin, the most commonly consumed dietary flavonoid, is a strong potential anti-obesity agent that has been implicated as an AMP-activated protein kinase (AMPK) activator and shown to ameliorate symptoms of metabolic syndrome in vivo. Here we investigated quercetin’s effect on (1) adipogenesis, the process of increasing adipocyte number, and (2) metabolism of mature adipocytes. In 3T3-L1 preadipocytes, quercetin dose-dependently inhibited adipogenesis, as evidenced by decreased lipid accumulation and expression of adipogenic markers such as peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/ enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 2 (aP2), and acetyl-CoA carboxylase (ACC) on mRNA and protein levels. This inhibitory effect was limited to the early stages of adipogenesis (0-36 hours), and quercetin treatment altered the normal expression pattern of cell cycle related genes Cyclin A and p27, indicating quercetin may inhibit adipogenesis through cell cycle events. We next investigated quercetin’s ability to activate AMPK and the metabolic pathways related to AMPK activation: lipolysis and b-oxidation. Quercetin increased phosphorylation of AMPK and its downstream target ACC. Further, quercetin treatment (100μM) increased free fatty acid content in the media through an AMPK-dependent mechanism. Quercetin up-regulated mRNA expression of uncoupling proteins 3 (UCP3) and peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1a), indicating that quercetin may induce mitochondrial oxidative pathways, also through an AMPK-dependent pathway. These findings suggest (1) quercetin inhibits adipogenesis through the regulation of early cell cycle events required for adipogenic differentiation, and (2) quercetin’s activation of AMPK induces lipolytic and oxidative pathways. Taken together, quercetin could be further developed as an anti-obesity agent because of its potential to inhibit both hyperplasia and hypertrophy in vitro.
59

Parent Perceptions of Health Care Networks for Children with Inherited Metabolic Diseases: A Mixed Methods Study

Al-Baldawi, Zobaida 29 June 2022 (has links)
Objectives: The aim of this study was to gain a thorough understanding of parents’ perceptions of and experiences with the care networks surrounding young children (<=12 years) with inherited metabolic diseases (IMDs). Methods: In this mixed methods study, parent participants created a ‘care map’ depicting their child’s network of care providers. We analyzed care maps using social network analysis. A subset of parents participated in a semi-structured interview. We analyzed interviews thematically and integrated quantitative and qualitative results narratively. Results: Sixty parents contributed care maps and 10 participated in interviews. Parent-drawn care networks were large with few connections between providers. Parents felt responsible for creating and maintaining care networks and for coordinating care. They valued providers who trusted them as part of their child’s health care team. Conclusions: Our findings highlight the complexity of care for children with IMDs and can inform the design of interventions to improve care.
60

Third Trimester Plasma Metabolites Associated with Gestational Diabetes: An Ancillary Analysis of the Healthy Beginnings Trial

Rosario, Rodrigo D 01 September 2021 (has links) (PDF)
Introduction: Gestational Diabetes Mellitus (GDM) results in complications affecting both mother and child. The implementation of metabolomics to assess metabolite alterations is needed to better understand its etiology. Prior research by our lab in first trimester samples of GDM patients indicated altered fatty acid utilization and purine degradation products. Objective: Metabolomics analysis was conducted on third trimester (28 -35 weeks) plasma samples to observe differences associated with GDM. Methods: Fifty samples taken from the Healthy Beginnings trial and their corresponding data were included in the study. Plasma samples were analyzed using UPLC-MS with metabolomic assays for primary metabolomics, aminomics, and lipidomics. Plasma metabolite comparisons were made between participants who developed GDM (n=27) and individuals without GDM (n=23) through UPLC-MS analysis with metabolomic assays for primary metabolomics, aminomics, and lipidomics. Dietary intake was collected via 24 hour recalls to assess dietary differences between groups. Results: Fatty acid oxidation-related metabolites altered included lower decanoyl-, dodecenoyl-, and lauroyl-carnitine (p Conclusion: In support of previous research in first trimester samples, metabolomics revealed altered markers of fatty acid metabolism and purine degradation in GDM patients. Further research is necessary to validate these findings and identify the key roles these metabolites may play in GDM development. Keywords: Gestational diabetes mellitus, metabolomics, acylcarnitines, purines

Page generated in 0.0227 seconds