• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 38
  • 28
  • 8
  • 6
  • 6
  • 4
  • Tagged with
  • 187
  • 187
  • 119
  • 57
  • 56
  • 52
  • 42
  • 38
  • 31
  • 30
  • 29
  • 28
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Návrh stroje pro stříhání a ohýbání vybrané součástky / Bending and cutting press machine for representativ part

Kvapil, Jan January 2013 (has links)
KVAPIL Jan: Bending and cutting press machine for representativ part The Master´s thesis, which is developer in an undergraduate degrese in M-VSR, provides a brief overview and description of the cutting and bending technology. The thesis is carried out the calculation, which is essential for the design cutting and bending tools. Models and design are created in the software SolidWorks 2012. The Master´s thesis includes a general procedure after the award until after copy the parts on it.
122

Výroba držáku antény sdruženým nástrojem / The Antenna Bracket Manufacturing by a Compound Tool

Lipka, Ondřej January 2015 (has links)
This master’s thesis focuses on the concept of large-lot manufacturing of sheet metal component made from DC01 steel. Based on forethought, the method of compound tool combining shearing and bending was chosen. The theoretical part analyses used technologies in detail. In the next part specific course of manufacture was created and supplied with technological calculations. Based on all needed facts the tool was designed and after that forming machine, LDC 160 crank press, was chosen. At the end the usability of designed concept was confirmed with economical calculations.
123

Výroba krytu brzdového kotouče sdruženým nástrojem / The Manufacturing of Brake Disk cover by the Compound Tool

Kučera, Jiří January 2015 (has links)
This project is conceived within the master's degree in engineering technology and industry management (M2I-K Engineering) technology by design of the brake disc cover in compound tool, with year production 500 000 pcs. The material is deep-drawn sheet metal 11 305.21, 1 mm thickness. It is based on the literature studies about forming and calculation was suggested several variants of the present components. The proposed tool is clamped in the crank press LDC 400 firm Šmeral with a nominal force of 4000 kN. The functional parts are made from steel 19 573. The proposed technology of the deep drawing was verified by using simulation program AutoForm.
124

Pre-Straining Operation : Prediction of Strain Paths Within a Forming Limit Diagram

Olofsson, Elin, Al-Fadhli, Mohammed January 2022 (has links)
In a Sheet Metal Forming (SMF) operation, complex geometries in multi-stage forming processes are mostly common. Forming a blank, major and minor straining willoccur. Follow the straining of the blank elements over the forming process will provide its strain paths. The strain paths can be visualized in a Forming Limit Diagram(FLD); with a Forming Limit Curve (FLC) corresponding to the strained material.In the diagram, the determination whether an element is critical due to fracture ornecking is determined. Utilizing the FLD, the formability of a material is defined;the elements and their paths are however linear. Manufacture a sheet metal usinga multi-stage forming process will contribute to Non-Linear Strain Paths (NLSP).Thus, the FLD is no longer valid. Providing a tool from the company RISE IVF AB to be used for pre-strainingoperations, the objective of this thesis work is to enhance and investigate the possibility of generating the three main strain paths - uniaxial tension, plane strain,equibiaxial tension - of the dual-phased steel DP800. This study is in collaborationwith Volvo Cars Body Components (VCBC) in Olofström, where the pre-strainingwill be used in a future study of the SMF non-linear behaviour. Utilizing the finiteelement software AutoForm - specialized on SMF operations - this numerical basedstudy can be conducted. The ability of generating the three main strain paths will be achieved by modifying the blank geometries and provided tooling. By changing the dimensions ofthe punch and draw beads, critical regions and forced concentrated straining weresupposed to be achieved. These changes are implemented with the intention to fulfillthe criterion of the straining in terms of magnitude and gradient. The result from the simulations shows that the modifications have different effecton both the straining level and gradient. The modifications of both the draw beadand the punch were not of any significant use, while the blank dimension was mostvital when generating sufficient strain paths. Hence, the tooling modifications withinthis thesis work did not enhance the prediction of the three strain paths.
125

Coupled Sequential Process-Performance Simulation and Multi-Attribute Optimization of Structural Components Considering Manufacturing Effects

Najafi, Ali 06 August 2011 (has links)
Coupling of material, process, and performance models is an important step towards a fully integrated material-process-performance design of structural components. In this research, alternative approaches for introducing the effects of manufacturing and material microstructure in plasticity constitutive models are studied, and a cyberinfrastructure framework is developed for coupled process-performance simulation and optimization of energy absorbing components made of magnesium alloys. The resulting mixed boundary/initial value problem is solved using nonlinear finite element analysis whereas the optimization problem is decomposed into a hierarchical multilevel system and solved using the analytical target cascading methodology. The developed framework is demonstrated on process-performance optimization of a sheetormed, energy-absorbing component using both classical and microstructure-based plasticity models. Sheetorming responses such as springback, thinning, and rupture are modeled and used as manufacturing process attributes whereas weight, mean crush force, and maximum crush force are used as performance attributes. The simulation and optimization results show that the manufacturing effects can have a considerable impact on design of energy absorbing components as well as the optimum values of process and product design variables.
126

Failure Prediction of Complex Load Cases in Sheet Metal Forming : Emphasis on Non-Linear Strain Paths, Stretch-Bending and Edge Effects

Barlo, Alexander January 2023 (has links)
With the increased focus on reducing carbon emissions in today’s society, several industries have to overcome new challenges, where especially the automotive industry is under a lot of scrutiny to deliver improved and more environmentally friendly products. To meet the demands from customers and optimize vehicles aerodynamically, new cars often contain complex body geometries, together with advanced materials that are introduced to reduce the total vehicle weight. With the introduction of the complex body components and advanced materials,one area in the automotive industry that has to overcome these challenges is manufacturing engineering, and in particular the departments working with the sheet metal forming process. In this process complex body component geometries can lead to non-linear strain paths and stretch bending load cases, and newly introduced advanced materials can be prone to exhibit behaviour of edge cracks not observed in conventional sheet metals. This thesis takes it onset in the challenges seen in industry today with predicting failure of the three complex load cases: Non-Linear Strain Paths, Stretch-Bending,and Edge Cracks. Through Finite Element simulation attempts are made to accurately predict failure caused by aforementioned load cases in industrial components or experimental setups in an effort to develop post-processing methods that are applicable to all cases.
127

BENDING CHARACTERISTICS AND STRETCH BENDABILITY OF MONOLITHIC AND LAMINATED SHEET MATERIALS

GOVINDASAMY, GANESH NIRANJAN 11 1900 (has links)
Bending deformation characteristics of monolithic, bi-layer and tri-layer laminate sheet materials are studied using Analytical and FE models in this work. The analytical model, based on advanced theory of pure bending considers von Mises yielding, Ludwik hardening law and Bauschinger effect for various laminate constituent thickness ratios. The principal stresses and strains through the thickness and, change in relative thickness at specified bend curvatures are obtained as a function of increasing curvature during bending. Additionally, 2D and 3D finite element (FE) based models for bending are developed to overcome simplifications of the analytical models such as the effect of specimen width on strain distribution. Further, to experimentally assess and validate bending characteristics from the analytical models, a new experimental bend test-jig that is closer to pure bending is developed. The experimental set-up is an open concept design that allows access to the tensile surface as well as through-thickness region for recording and analyzing strains using an online strain mapping system based on digital image correction (DIC) method. Experimental bending is carried out on annealed AA2024 monolithic aluminum alloy sheet and Steel/Aluminum (SS400/AA1050) bi-layer laminate sheet at different thickness ratios. The model and experiments are studied in terms of stress and strain distribution as a function of relative thickness for different clad to matrix thickness ratios. Further the case of simultaneous bending and stretching over small radius bending is analyzed for limit strain prediction using an existing limit strain criterion based on major strain acceleration. An angular stretch bend test is used to subject an hour-glass shaped AA20240-O aluminum sheet specimen to simultaneous stretching and bending deformation while continuously imaging the critical tensile surface region using an optical camera. The strain development in the critical region is subsequently analyzed using digital image correlation (DIC) method. The effect of DIC parameters such as facet size, facet step, and effect of curve fitting procedures on limit strain are studied. An average limit strain of 0.2 is obtained for AA2024 for a facet size of 9x9 pixels, a facet step of 5 pixels and by applying a 5th order polynomial curve fit to the strain data. The results obtained are comparable with a limit strain of the material. The results are compared with a commercially available tri-layer laminate sheet material Alclad 2024 that has 80 μm thin layer of soft AA1100 on both surfaces of harder AA2024 core material. An improved stretch bendability limit strain of 0.24 for Alclad 2024 tri-layer specimen was predicted by utilizing the major strain acceleration criterion. The thin AA1100 protective layer produced a positive effect on the stretch bendability of Alclad 2024 when compared with monolithic AA2024 specimen. / Thesis / Doctor of Philosophy (PhD)
128

Springback Calibration of Sheet Metal Components Using Impulse Forming Methods

Woodward, Steven T. 27 July 2011 (has links)
No description available.
129

Fast algorithms for material specific process chain design and analysis in metal forming - final report DFG Priority Programme SPP 1204 / Algorithmen zur schnellen, werkstoffgerechten Prozesskettengestaltung und -analyse in der Umformtechnik

23 August 2016 (has links) (PDF)
The book summarises the results of the DFG-funded coordinated priority programme \"Fast Algorithms for Material Specific Process Chain Design and Analysis in Metal Forming\". In the first part it includes articles which provide a general introduction and overview on the field of process modeling in metal forming. The second part collates the reports from all projects included in the priority programme.
130

Methode multigrilles parallèle pour les simulations 3D de mise en forme de matériaux / Methode multigrilles parallèle pour les simulations 3D de mise en forme de matériaux

Vi, Frédéric 16 June 2017 (has links)
Cette thèse porte sur le développement d’une méthode multigrilles parallèle visant à réduire les temps de calculs des simulations éléments finis dans le domaine de la mise en forme de pièces forgées en 3D. Ces applications utilisent une méthode implicite, caractérisées par une formulation mixte en vitesse/pression et une gestion du contact par pénalisation. Elles impliquent de grandes déformations qui rendent nécessaires des remaillages fréquents sur les maillages tétraédriques non structurés utilisés. La méthode multigrilles développée suit une approche hybride, se basant sur une construction géométrique des niveaux grossiers par déraffinement de maillage non emboîtés et sur une construction algébrique des systèmes linéaires intermédiaires et grossiers. Un comportement asymptotique quasi-linéaire et une bonne efficacité parallèle sont attendus afin de permettre la réalisation de simulations à grand nombre de degrés de liberté dans des temps plus raisonnables qu’aujourd’hui. Pour cela, l’algorithme de déraffinement de maillages est compatible avec le calcul parallèle, ainsi que les opérateurs permettant les transferts de champs entre les différents niveaux de maillages partitionnés. Les spécificités des problèmes à traiter ont mené à la sélection d'un lisseur plus complexe que ceux utilisés plus fréquemment dans la littérature. Sur la grille la plus grossière, une méthode de résolution directe est utilisée, en séquentiel comme en calcul parallèle. La méthode multigrilles est utilisée en tant que préconditionneur d’une méthode de résidu conjugué et a été intégrée au logiciel FORGE NxT et montre un comportement asymptotique et une efficacité parallèle proches de l’optimal. Le déraffinement automatique de maillages permet une compatibilité avec les remaillages fréquents et permet à la méthode multigrilles de simuler un procédé du début à la fin. Les temps de calculs sont significativement réduits, même sur des simulations avec des écoulements particuliers, sur lesquelles la méthode multigrilles ne peut être utilisée de manière optimale. Cette robustesse permet, par exemple, de réduire de 4,5 à 2,5 jours le temps de simulation d’un procédé. / A parallel multigrid method is developed to reduce large computational costs involved by the finite element simulation of 3D metal forming applications. These applications are characterized by a mixed velocity/pressure implicit formulation with a penalty formulation to enforce contact and lead to large deformations, handled by frequent remeshings of unstructured meshes of tetrahedral. The developed multigrid method follows a hybrid approach where the different levels of non-nested meshes are geometrically constructed by mesh coarsening, while the linear systems of the intermediate and coarse levels result from the algebraic approach. A close to linear asymptotical behavior is expected along with parallel efficiency in order to allow simulations with large number of degrees of freedom under reasonable computation times. These objectives lead to a parallel mesh coarsening algorithm and parallel transfer operators allowing fields transfer between the different levels of partitioned meshes. Physical specificities of metal forming applications lead to select a more complex multigrid smoother than those classically used in literature. A direct resolution method is used on the coarsest mesh, in sequential and in parallel computing. The developed multigrid method is used as a preconditioner for a Conjugate Residual algorithm within FORGE NxT software and shows an asymptotical behavior and a parallel efficiency close to optimal. The automatic mesh coarsening algorithm enables compatibility with frequent remeshings and allows the simulation of a forging process from beginning to end with the multigrid method. Computation times are significantly reduced, even on simulations with particular material flows on which the multigrid method is not optimal. This robustness allows, for instance, reducing from 4.5 to 2.5 days the computation of a forging process.

Page generated in 0.0454 seconds