• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 8
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 65
  • 16
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effects of Nano-structure Enhanced Cathodes on Power Production in Microbial Fuel Cells

Yost, Alan January 2011 (has links)
No description available.
42

Decentralized control of sound radiation from periodically stiffened panels

Schiller, Noah Harrison 04 January 2008 (has links)
Active structural acoustic control has previously been used to reduce low-frequency sound radiation from relatively simple laboratory structures. However, significant implementation issues have to be addressed before active control can be used on large, complex structures such as an aircraft fuselage. The purpose of this project is to extend decentralized structural control systems from individual bays to more realistic airframe structures. In addition, to make this investigation more applicable to industry, potential control strategies are evaluated using a realistic aft-cabin disturbance identified from flight test data. This work focuses on decentralized control, which implies that each control unit is designed and implemented independently. While decentralized control systems are relatively scalable, performance can be limited due to the destabilizing interaction between neighboring controllers. An in-depth study of this problem demonstrates that the modeling error introduced by neighboring controllers can be expressed as the product of the complementary sensitivity function of the neighboring control unit multiplied by a term that quantifies the diagonal dominance of the plant. This understanding can be used to improve existing control strategies. For instance, decentralized performance can often be improved by penalizing control effort at the zeros of the local control model. This stabilizes each control unit and reduces the modeling error induced on neighboring controllers. Additional analyses show that the performance of decentralized model-based control systems can be improved by augmenting the structural damping using robust, low-authority control strategies such as direct velocity feedback and positive position feedback. Increasing the structural damping can supplement the performance of the model-based control strategy and reduce the destabilizing interaction between neighboring control units. Instead of using low-authority controllers to stabilize the decentralized control system, another option is to modify the model-based design. Specifically, an iterative approach is developed and validated using real-time control experiments performed on a structural-acoustic system with poles close to the stability boundary, non-minimum phase zeros, and unmodeled dynamics. Experiments demonstrate that the iterative control strategy, which combines frequency-shaped linear quadratic Gaussian (LQG) control with loop transfer recovery (LTR), is capable of achieving 12dB peak reductions and a 3.6dB integrated reduction in radiated sound power from a rib-stiffened aluminum panel. / Ph. D.
43

Use of Piezoelectric Actuators to Effect Snap-Through Behavior of Unsymmetric Composite Laminates

Schultz, Marc Robert 23 April 2003 (has links)
As a new concept for morphing structures, the use of piezoelectric actuators to effect snap-through behavior of simple unsymmetric cross-ply composite laminates is examined. Many unsymmetric laminates have more than one stable room-temperature shape and can be snapped through from one stable shape to another. In this new concept for morphing structures, one or more piezoelectric actuators are bonded to unsymmetric laminates, and are then used to snap the laminate from one shape to another. The actuator would be used to change shape, but would not be required to maintain the shape. Using the Rayleigh-Ritz technique, several models are developed to predict the interaction between the base laminate and the actuator. In particular, the voltage (applied to the actuator) needed to snap the laminate is predicted. The NASA-LaRC Macro-Fiber Composite&174; (MFC&174;) actuator is chosen as the actuator of choice for this work. A laminate is manufactured, an actuator is bonded to the laminate, and experiments are performed. Since the agreement between the initial models and experimental results was not good, the models were revised. Good agreement between the predictions of the revised model and experiment is reached. Suggestions for future research directions are presented. / Ph. D.
44

Method development for rheological characterization of microfibrillated cellulose / Utveckling av en metod för reologisk karakterisering av mikrofibrillerad cellulosa

Wahlkrantz, Elin January 2020 (has links)
This thesis contributes to a development of a method for rheological characterization of microfibrillated cellulose. The intended use of the method is to be able to distinguish between different grades of microfibrillated cellulose. The method that was developed had preparation procedure of suspensions, pH, dry content and conductivity as well as measuring geometry and measuring sequence in mind. The method resulted in using a propeller mixer for sample preparation and the most suitable properties of the samples for comparison of different qualities of microfibrillated cellulose was evaluated to be pH 8 with a dry content of 2.0 wt% and a conductivity of 110 µS/cm. The rheology of the microfibrillated cellulose suspensions was examined by using a dynamic rotational rheometer and a splined bob and cup (C25G/PC25G). The complex viscosity from amplitude sweeps is used as the parameter to distinguish between different grades of 2 wt% microfibrillated cellulose suspensions. At 1.0 wt% the pH of the suspensions appeared to have a very small impact on the results from rheological measurements while an increased conductivity of the suspensions resulted in an increased complex viscosity. The dry content dependency appeared to be exponential in the range of 0.5 to 3.0 wt% and it was thus easier to distinguish between different grades of microfibrillated cellulose when the dry content is 2.0 wt% compared to 1.0 or 1.5 wt%.
45

Program pro inovaci řídicího systému SORT / Program for inovation of the SORT control system

Šulc, Martin January 2014 (has links)
The analysis for the extension of the control system and proposal of controlling program for surveillance cameras and related theoretical analysis necessary for understanding problems. Proposal communication protocol to access all functions via TCP/IP communication. Subsequent protocol implementation into control program and a programmable controller. Programming application with a user interface for camera control and basic image processing. The program also represents the server for TCP/IP communication with clients over the proposed protocol. The proposed application has to fulfill high pretensions of data streaming from cameras. Extension of the existing control system of the telescope, dome and other systems. The addition of analog measurement and control of digital inputs and outputs. Furthermore, control of stepper motors to control focusers. The embedded communication protocol will be expanded of the new instruction.
46

Temperature dependency of rheological properites of different dispersions containing microfibrillated cellulose / Temperaturberoende av reologiska egenskaper för olika dispersioner innehållande mikrofibrillerad cellulosa

Swanelius, Johanna January 2022 (has links)
Today, the focus lies on the state of the environment and how we can choose more sustainable alternatives to oil based materials. One material of interest is microfibrillated cellulose (MFC).The microfibril exhibits interesting properties, which one is its excellent barrier properties, that is expected to come in good use for the conversion to a more sustainable society. It is believed that the use of biobased barriers will increase with these new materials and MFC is showing promising results. But in order to develop the material to its full potential, it is important to investigate how MFC behaves in different situations, which can be examined with rheological measurements. The aim of the thesis is to examine how the rheological properties of suspensions containing MFC are affected by temperature and time storing and how the learning from this work can be used for influencing dispersion properties. Four samples were investigated, containing different amounts of MFC and modified waxy maize starch. The samples were analyzed with a dynamic rotational rheometer (Kinexus Pro +) with a splined cup and bob. The following steps were included in the method development used in this work: sample preparation, the repeatability, rest time and statistical analysis. An oscillatory shear and steady shear measurement was performed on the samples, and selected samples were studied with microscopy. The results show that the temperature has affected the samples. The shear viscosity of all samples decreased with increasing temperature and the samples followed the temperature dependence of Arrhenius' equation. For samples containing MFC, the structure was affected, and the initial viscosity was not recovered. The complex viscosity did also decrease at the beginning to then suggestively increase, creating a stronger network at higher temperatures. With the raised temperature the bonding between the fibrils became weaker, which in turn made the dispersion less viscous. Then, depending on the applied force, the shear viscosity and complex viscosity acted differently. To conclude, both the shear viscosity and the complex viscosity in these dispersions containing MFC are dependent on the temperature and time storing. By the learnings from this work, a method has been developed to understand how to use temperature and storing time to lower the shear viscosity and lower, or increase, the complex viscosity. / Idag ligger det ett stort fokus på miljöns tillstånd och hur vi kan välja mer hållbara alternativjämfört med oljebaserade material. Ett material av intresse är mikrofibrillerad cellulosa (MFC).Denna mikrofibrill besitter intressanta egenskaper, varav en är enastående barriäregenskaper,som förväntas komma till god användning i omställningen till ett mer hållbart samhälle. Det tros att biobaserade barriärer kommer att användas mer i dessa nya material och här visar MFC lovande resultat. Men för att kunna utveckla materialet till sin fulla potential är det viktigt att undersöka hur MFC beter sig i olika situationer, som kan undersökas genom reologiska mätningar. Syftet med arbetet är att undersöka hur de reologiska egenskaperna för suspensioner innehållande MFC påverkas av temperatur och lagringstid samt hur lärdomen från det här arbetet kan användas för att påverka dispersionsegenskaper. Fyra prover undersöktes,innehållande olika mängd MFC och modifierad majsstärkelse. Proverna analyserades med en dynamisk rotations reometer (Kinexus Pro +) med räfflad kopp och bob. Följande steg ingick i metodutvecklingen som användes i detta arbete: provberedning, repeterbarhet, vilotid och statistisk analys. En oscillerande skjuvning och jämn skjuvmätning utfördes på de olika proverna samt att utvalda prover studerades med mikroskopi. Resultatet visade att temperaturen hade påverkat proverna. Skjuvviskositeten för alla prover minskade med en ökande temperatur och proverna följde temperaturberoendet av Arrhenius ekvation. För prover innehållande MFC påverkades strukturen och startviskositeten återficks inte. Den komplexa viskositeten minskade också till en början för att sedan suggestivt öka, vilket skapade ett starkare nätverk vid högre temperaturer. Med en högre temperatur blev bindningarna mellan fibrillerna svagare, vilket bidrog att dispersionerna blev mindre viskösa. Beroende på den applicerade kraften, verkade skjuvviskositeten och den komplexa viskositeten olika. Slutsatsen var att både skjuvviskositeten och den komplexa viskositeten i dessa prover innehållande MFC beroende av temperaturen och lagringstid. Från lärdomen av arbetet har en metod tagits fram för att kunna använda temperatur och lagringstid för att sänka skjuvviskositeten och sänka, eller öka, den komplexa viskositeten.
47

CAPS: AN EGLIN RANGE STANDARD FOR PC-BASED TELEMETRY DATA REDUCTION

Thomas, Tim 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / A need exists to provide a flexible data reduction tool that minimizes software development costs and reduces analysis time for telemetry data. The Common Airborne Processing System (CAPS), developed by the Freeman Computer Sciences Center at Eglin AFB, Florida, provides a generalpurpose data reduction capability for digitally recorded data on a PC. Data from virtually any kind of MIL-STD-1553 message or Pulse Code Modulation (PCM) frame can be extracted and converted to engineering units using a parameter dictionary that describes the data format. The extracted data can then be written to a file, ASCII or binary, with a great deal of flexibility in the output format. CAPS has become the standard for digitally recorded data reduction on a PC at Eglin. New features, such as composing derived parameters using mathematical expressions, are being added to CAPS to make it an even more productive data reduction tool. This paper provides a conceptual overview of the CAPS version 2.3 software.
48

Modeling Time-dependent Responses of Piezoelectric Fiber Composite

Li, Kuo-An 2009 December 1900 (has links)
The existence of polymer constituent in piezoelectric fiber composites (PFCs) could lead to significant viscoelastic behaviors, affecting overall performance of PFCs. High mechanical and electrical stimuli often generate significant amount of heat, increasing temperatures of the PFCs. At elevated temperatures, most materials, especially polymers show pronounced time-dependent behaviors. Predicting time-dependent responses of the PFCs becomes important to improve reliability in using PFCs. We study overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and MFCs consist of unidirectional PZT fibers dispersed in epoxy placed between two interdigitated electrode and kapton layers. The AFCs have a circular fiber cross-section while the MFCs have a square fiber cross-section. Finite element (FE) models of representative volume elements (RVEs) of active PFCs, having square and circular fiber cross-sections, are generated for composites with 20, 40, and 60 percent fiber contents. Two FE micromechanical models having one fiber embedded in epoxy matrix and five fibers placed in epoxy matrix are considered. A continuum 3D piezoelectric element in ABAQUS FE is used. A general time-integral function is applied for the mechanical, electrical, and piezoelectric properties in order to incorporate the time-dependent effect and histories of loadings. The effective properties of PZT-5A/epoxy and PZT-7A/LaRC-SI piezocomposites determined from the FE micromechanical models are compared to available experimental data and analytical solutions in the literature. Furthermore, the effect of viscoelastic behaviors of the LaRC-SI matrix at an elevated temperature on the overall electro-mechanical and piezoelectric constants are examined.
49

Determination Of Antimicrobial Spectrum Of K9 Type Yeast Killer Toxin And Its Cell Killing Activity

Yener, Burcu 01 July 2006 (has links) (PDF)
Some yeast strains secrete extracellular polypeptide toxins known to have potential growth inhibitory activity on other sensitive yeast genera but are immune to their own toxins. These yeast strains are termed as killer yeasts and their toxins are designated as killer proteins or killer toxins. Killer phenotypes are classified into 11 typical types (K1-K11). The toxic actions of yeast killer proteins on sensitive cells show differences and one of the most important toxic actions involves the selective functional damage by hydrolyzing major cell wall components. Because mammalian cells lack a cell wall, novel highly selective antifungals tend to be harmless to people by targeting important cell wall components specific to fungi. We have previously characterized the K9 type yeast killer protein isolated from Hansenula mrakii. This protein is stable at pH and temperature values appropriate for its medical usage. Antifungal activity of this protein was tested against 23 human pathogenic yeast and 9 dermathophyte strains. Pathogenic yeast strains found to be susceptible and both the MIC and MFC values ranged from 0.25 to 8 &micro / g/ml except C. parapsilosis and C guilliermondii isolates. 9 dermatophyte strains were not susceptible to this protein and MICs were &gt / 64 &micro / g/ml. According to the cell killing analysis toxin activity starts within the first 4 hours and complete cell death was observed for the 4, 8 and 16 times the MIC concentrations at 24 hour. The results obtained from this study might make the potential use of this protein possible as a selective antimycotic agent.
50

Antimicrobial Spectrum Determination Of The K5 Type Yeast Killer Protein And Its Kinetics Of Cell Killing

Tureli, Akif Emre 01 December 2005 (has links) (PDF)
Some yeast strains under certain conditions secrete into the medium polypeptide toxins which are inhibitory to sensitive cells. These yeast strains are termed as killer yeasts and their toxins are designated as killer proteins or killer toxins. Killer proteins are classified into 11 typical types (K1-K11). These toxins have different killing mechanisms on sensitive cells. Some of them hydrolyze major cell wall component &amp / #946 / -1,3- glucans. As mammalian cells lack cell walls research and development of novel highly selective antifungals are mostly focused on the agents which target the components of the fungal cell wall. We have previously characterized the K5 type killer protein. This protein is an exo &amp / #946 / -1,3-glucanase which is stable at pH&rsquo / s and temperatures appropriate for its medical usage. &amp / #946 / -1,3- glucan hydrolyzing activity of the K5 type killer protein highlighted the potential use of this protein as a selective antimycotic agent. Antifungal activity of the K5 type yeast killer protein was tested against 26 human pathogenic yeast and 9 dermathophyte strains and found to be affective on all of the tested strains. Toxin MIC50, MIC100 and MFC values were found to be between 0.25-4, 0.5-8, 1-8 &micro / g/ml respectively except Candida krusei isolates. Cell killing analysis revealed that toxin activity starts within first 2 hours and complete cell death time differs due to the susceptibility of strains to the K5 type yeast killer protein. K5 type yeast killer protein would be used as a novel and selective agents with the results obtained from this study.

Page generated in 0.0261 seconds