• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 581
  • 166
  • 92
  • 69
  • 55
  • 26
  • 22
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1259
  • 316
  • 284
  • 187
  • 166
  • 128
  • 123
  • 117
  • 115
  • 115
  • 90
  • 75
  • 71
  • 69
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Chromatin Insulators and CTCF: Architects of Epigenetic States during Development.

Mukhopadhyay, Rituparna January 2004 (has links)
<p>A controlled and efficient coordination of gene expression is the key for normal development of an organism. In mammals, a subset of autosomal genes is expressed monoallelically depending on the sex of the transmitting parent, a phenomenon known as genomic imprinting.</p><p>The imprinted state of the <i>H19</i> and <i>Igf2</i> genes is controlled by a short stretch of sequences upstream of <i>H19</i> known as the imprinting control region (ICR). This region is differentially methylated and is responsible for the repression of the maternally inherited <i>Igf2</i> allele. It harbors hypersensitive sites on the unmethylated maternal allele and functions as an insulator that binds a chromatin insulator protein CTCF. Hence the <i>H19</i> ICR, which plays an important role in maintaining the imprinting status of <i>H19</i> and <i>Igf2</i>, was shown to lose the insulator property upon CpG methylation.</p><p>Another ICR in the <i>Kcnq1</i> locus regulates long-range repression of <i>p57Kip2</i> and <i>Kcnq1</i> on the paternal allele, and is located on the neighboring subdomain of the imprinted gene cluster containing <i>H19</i> and <i>Igf2</i>, on the distal end of mouse chromosome 7. Similarly to the <i>H19</i> ICR, the <i>Kcnq1</i> ICR appears to possess a unidirectional and methylation-sensitive chromatin insulator property in two different somatic cell types. Hence, methylation dependent insulator activity emerges as a common feature of imprinting control regions.</p><p>The protein CTCF is required for the interpretation and propagation of the differentially methylated status of the <i>H19</i> ICR. Work in this thesis shows that this feature applies genomewide. The mapping of CTCF target sites demonstrated not only a strong link between CTCF, formation of insulator complexes and maintaining methylation-free domains, but also a network of target sites that are involved in pivotal functions. The pattern of CTCF <i>in vivo</i> occupancy varies in a lineage-specific manner, although a small group of target sites show constitutive binding. </p><p>In conclusion, the work of this thesis shows that epigenetic marks play an important role in regulating the insulator property. The studies also confirm the importance of CTCF in maintaining methylation-free domains and its role in insulator function. Our study unravels a new range of target sites for CTCF involved in divergent functions and their developmental control.</p>
562

Genetic and Epigenetic Variation in the Human Genome : Analysis of Phenotypically Normal Individuals and Patients Affected with Brain Tumors

De Bustos, Cecilia January 2006 (has links)
<p>Genetic and epigenetic variation is a key determinant of human diversity and has an impact on disease predisposition. Single nucleotide polymorphisms (SNPs) and copy number polymorphisms (CNPs) are the main forms of genetic variation. The challenge is to distinguish normal variations from disease-associated changes. Combination of genetic and epigenetic alterations, often together with an environmental component, can cause cancer. In paper I, we investigated possible alterations affecting the transcriptional regulation of PDGFRα in patients affected with central nervous system tumors by characterizing the haplotype combinations in the <i>PDGFRA</i> gene promoter. A specific over-representation of one haplotype (H2δ) in primitive neuroectodermal tumors and ependymomas was observed, suggesting a functional role for the ZNF148/PDGFRα pathway in the tumor pathogenesis. In paper II, 50 glioblastomas were analyzed for DNA copy number variation with a chromosome 22 tiling genomic array. While 20% of tumors displayed monosomy 22, copy number variations affecting a portion of chromosome 22 were found in 14% of cases. This implies the presence of genes involved in glioblastoma development on 22q. Paper III described the analysis of copy number variation of 37 ependymomas using the same array. We detected monosomy in 51.5% of the samples. In addition, we identified two overlapping germline deletions of 2.2 Mb and 320 kb (the latter designated as Ep CNP). In order to investigate whether Ep CNP was a common polymorphism in the normal population or had an association with ependymoma development, we constructed a high-resolution PCR product-based microarray covering this locus (paper IV). For this purpose, we developed a program called <i>Sequence Allocator</i>, which automates the process of array design. This approach allowed assessment of copy number variation within regions of segmental duplications. Our results revealed that gains or deletions were identical in size and encompassed 290 kb. Therefore, papers I-IV suggest that some SNPs and CNPs can be regarded as tumor-associated polymorphisms. Finally, paper V describes variation of DNA methylation among fully differentiated tissues by using an array covering ~9% of the human genome. Major changes in the overall methylation were also found in colorectal cancer cell lines lacking one or two DNA methyltransferases.</p>
563

DNA Tools and Microfluidic Systems for Molecular Analysis

Jarvius, Jonas January 2006 (has links)
<p>Improved methods are needed to interrogate the genome and the proteome. Methods with high selectivity, wide dynamic range, and excellent precision, capable of simultaneously analyzing many biomolecules are required to decipher cellular function. This thesis describes a molecular and microfluidic toolbox designed with those criteria in mind. It also presents a tool for graphical representation of nucleic acid sequences.</p><p>Proximity ligation is a novel protein detection method that requires dual and proximate binding of two oligonucleotide-tagged affinity reagents to a protein or protein complex in order to elicit a signal. The responses from such recognition reactions are the formation of specific nucleic acid reporter molecules that are subsequently amplified and quantitatively detected. </p><p>A scalable microfluidic platform suitable for fluorescence detection, cell culture, and actuation is also described. The platform uses rapid injection molding to produce microstructures in thermoplastic materials. By applying a thin layer of silica to the structures, a lid made of silicone rubber coated onto a thermoplastic support can be covalently bonded to generate enclosed channels.</p><p>A method is presented for precise biomolecule counting, termed “amplified single-molecule detection”. The method preserves the discrete nature of biomolecules, converting specific molecular recognition events to fluorescence-labeled micrometer-sized objects that are enumerated in microfluidic channels. </p><p>I also present a novel microarray-based detection method. To attain high selectivity and a wide dynamic range, the method is based on dual recognition with enzymatic discrimination and amplification. Upon target recognition in solution, DNA probes are subjected to thousand-fold amplification in solution, followed by selective detection on arrays and another hundred-fold amplification of reporter molecule created from the first amplification reaction. </p><p>Lastly, I describe a novel graphical representation of nucleic acid sequences using TrueType fonts that can be of value for visual inspection of DNA sequences and for teaching purposes</p>
564

Studies of Genome Diversity in <i>Bartonella</i> Populations : A journey through cats, mice, men and lice

Lindroos, Hillevi Lina January 2007 (has links)
<p>Bacteria of the genus <i>Bartonella</i> inhabit the red blood cells of many mammals, including humans, and are transmitted by blood-sucking arthropod vectors. Different species of <i>Bartonella</i> are associated with different mammalian host species, to which they have adapted and normally do not cause any symptoms. Incidental infection of other hosts is however often followed by various disease symptoms, and several <i>Bartonella</i> species are considered as emerging human pathogens.</p><p>In this work, I have studied the genomic diversity within and between different <i>Bartonella</i> species, with focus on the feline-associated human pathogen <i>B. henselae</i> and its close relatives, the similarly feline-associated <i>B. koehlerae</i> and the trench-fever agent <i>B. quintana</i> which is restricted to humans.</p><p>In <i>B. henselae</i>, the overall variability in sequence and genome content was modest and well correlated, suggesting low levels of intra-species recombination in the core genome. The variably present genes were located in the prophage and the genomic islands, which are also absent from <i>B. quintana</i> and <i>B. koehlerae</i>, indicating multiple independent excision events. In contrast, diversity of genome structures was immense and probably associated with rearrangements between the repeated genomic islands located around the terminus of replication, possibly to avoid the host’s immune system. In both <i>B. henselae</i> and the mouse-associated species <i>B. grahamii</i> a large portion of the chromosome was manifold amplified in long-time cultures and packaged into phage particles, allowing for different recombination rates for different chromosomal regions.</p><p>In B<i>. quintana</i>, diversity was studied by sequencing non-coding spacers. The low variability might be due to the recent emergence of this species. Surprisingly, also this species displayed high variability in genome structures, despite its lack of repeated sequences.</p><p>The results indicate that genome rearrangements and gain or loss of mobile elements are major mechanisms of evolution in <i>Bartonella</i>.</p>
565

Biomolecular Analysis by Dual-Tag Microarrays and Single Molecule Amplification

Ericsson, Olle January 2008 (has links)
<p>Padlock probes and proximity ligation are two powerful molecular tools for detection of nucleic acids and proteins, respectively. Both methods result in the formation of DNA reporter molecules upon recognition of specific target molecules. These reporter molecules can be designed to include tag sequences that can be analyzed by techniques for nucleic acid analysis. Herein, I present a dual-tag microarray (DTM) platform that is suitable for high-performance analyses of DNA reporter molecule libraries, generated by padlock and proximity probing reactions. The DTM platform was applied for analysis of mRNA transcripts using padlock probes, and of cytokines using proximity ligation. The platform drastically improved specificity of detection, and it allowed precise measurements of proteins and nucleic acids over wide dynamic ranges.</p><p>The thesis also presents two techniques for multi-probe analyses of biomolecules: the triple-specific proximity ligation assay (3PLA) for protein analyses, and the spliceotyping assay for mRNA analyses. 3PLA allows highly specific measurements of as little as hundreds of target protein molecules by interrogating three target epitopes simultaneously. In spliceotyping the exon composition of individual transcripts are represented as a series of tag sequences in DNA reporter molecules, via a series of target-dependent ligation reactions. Next, the splicing patterns along individual transcripts can be revealed by amplified single molecule detection and step-wise decoding.</p>
566

Bacterial community analysis, new exoelectrogen isolation and enhanced performance of microbial electrochemical systems using nano-decorated anodes

Xu, Shoutao 15 June 2012 (has links)
Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m��) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m�� generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to contribute current increase in CNT decorated anode MECs. The up regulated genes encoded to flavin also contribute to current enhancement in CNT decorated anode MECs. / Graduation date: 2013
567

Hierarchical Multi-Bottleneck Classification Method And Its Application to DNA Microarray Expression Data

Xiong, Xuejian, Wong, Weng Fai, Hsu, Wen Jing 01 1900 (has links)
The recent development of DNA microarray technology is creating a wealth of gene expression data. Typically these datasets have high dimensionality and a lot of varieties. Analysis of DNA microarray expression data is a fast growing research area that interfaces various disciplines such as biology, biochemistry, computer science and statistics. It is concluded that clustering and classification techniques can be successfully employed to group genes based on the similarity of their expression patterns. In this paper, a hierarchical multi-bottleneck classification method is proposed, and it is applied to classify a publicly available gene microarray expression data of budding yeast Saccharomyces cerevisiae. / Singapore-MIT Alliance (SMA)
568

Transcriptional Regulation in the Peripheral Nervous System and the Role of STAT3 in Axon Regeneration

Smith, Robin Patrick 30 September 2008 (has links)
Several factors contribute to the failure of the central nervous system (CNS) to regenerate after injury. These include inhibition of axonal growth by myelin and glial scar associated molecules, as well as the intrinsic inability of adult CNS neurons to grow long axons in environments that are permissive for younger neurons. Neurons in the peripheral nervous system (PNS) display a much higher capacity to regenerate after injury than CNS neurons, as shown by conditioning lesion experiments and by microtransplantation of dorsal root ganglia neurons into CNS white matter tracts. Our central hypothesis is that neurons of the PNS express specific regeneration associated genes that mediate their enhanced growth response after injury. We have employed a combination of subtractive hybridization, microarray comparison and promoter analysis to probe for genes specific to neurons of the dorsal root ganglia (DRG), using cerebellar granule neurons (CGN) as a reference. We have identified over a thousand different genes, many of whose products form interaction networks and signaling pathways. Moreover, we have identified several dozen transcription factors that may play a role in establishing DRG neuron identity and shape their responses after injury. One of these transcription factors is Signal Transducer and Activator of Transcription 3 (STAT3), previously known to be upregulated in the PNS after a conditioning lesion but not known to be specific to the PNS. Using a real time PCR and immunochemical approaches we have shown that STAT3 is constitutively expressed and selectively active in DRG neurons both in culture and in vivo. We show that the overexpression of wild type STAT3 in cerebellar granule neurons leads to the formation of supernumerary neurites, whereas the overexpression of constitutively active STAT3-C leads to a 20% increase in total neurite outgrowth. It is hoped that the genetic delivery of STAT3-C, potentially combined with co-activators of transcription, will improve functional regeneration of CNS axons in vivo.
569

An Analysis of Global Gene Expression Resulting from Exposure to Energetic Materials

McIntosh, Vernon L, Jr. 01 August 2010 (has links)
AN ANALYSIS OF GLOBAL GENE EXPRESSION RESULTING FROM EXPOSURE TO ENERGETIC MATERIALS A Dissertation Presented for the Doctor of Philosophy Degree University of Tennessee, Knoxville VERNON LASHAWN MCINTOSH JR. August 2010 Dedication This dissertation is dedicated to my family. My mother and father Debra and Vernon McIntosh instilled in me the respect for academic excellence and the drive maximize my potential. Early on, my younger brother Kyle started showing signs of a shared interest in biology thus my desire to be a positive role model for him kept me motivated. Last but certainly not least, my loving wife and best friend Nichole has been there to offer love and support throughout my entire undergraduate and graduate degrees. It’s difficult to imagine making it this far without her (and that’s not just because she paid the bills). Abstract Characteristic transcriptional biomarkers have been identified for microbial cultures exposed to 2, 4, 6-trinitrotoluene (TNT), 2, 6-dinitrotoluene (DNT), or triacetone-triperoxide (TATP). This study describes the generation of expression profiles for exposure to each compound, the functional significance of each response, and the identification of the characteristic alterations in gene expression associated with exposure to each compound. Expression profiles were generated from a total of three different candidate organisms: Escherichia coli, Saccharomyces cerevisiae, and Pseudomonas putida. Common to all three organisms, TNT exposure resulted in increased expression of genes involved in toxin resistance and drug efflux systems. The S.cerevisiae and E.coli expression profiles were both characterized by increased expression of genes involved in iron-sulfur cluster assembly, sulfur containing amino acids, sulfate transport and assimilation and the metabolism of nitrogen compounds. Only E.coli and Saccharomyces were used to generate DNT induced expression profiles; both profiles exhibited high degrees of similarity with each organism’s respective TNT profiles. This was especially true of the E.coli profile where 25 of the 30 alterations were also observed after exposure to TNT. A computational discriminant functional analysis was performed to identify characteristic biomarkers for each exposure. For each compound a set of transcriptional biomarkers (10 or less) was developed. An additional set of biomarkers was developed encompassing both TNT and DNT exposure. These sets of genes serve as a transcriptional fingerprint for exposure to each respective compound. The sensitivity and specificity of each transcriptional fingerprint is sufficient to correctly identify exposure to energetic materials against a background of non-energetic compound exposures. This study makes several novel contributions to the greater body of scientific knowledge: • This is the first documented study of the interactions of TATP in any biological system. • This is the first comprehensive gene expression study of the TNT response by P. putida, E.coli or E.coli. • This is the first application of computational class prediction in the development of biomarkers for exposure to energetic materials
570

Transcriptomic Data Analysis Using Graph-Based Out-of-Core Methods

Rogers, Gary L 01 August 2011 (has links)
Biological data derived from high-throughput microarrays can be transformed into finite, simple, undirected graphs and analyzed using tools first introduced by the Langston Lab at the University of Tennessee. Transforming raw data can be broken down into three main tasks: data normalization, generation of similarity metrics, and threshold selection. The choice of methods used in each of these steps effect the final outcome of the graph, with respect to size, density, and structure. A number of different algorithms are examined and analyzed to illustrate the magnitude of the effects. Graph-based tools are then used to extract putative gene networks. These tools are loosely based on the concept of clique, which generates clusters optimized for density. Innovative additions to the paraclique algorithm, developed at the Langston Lab, are introduced to generate results that have highest average correlation or highest density. A new suite of algorithms is then presented that exploits the use of a priori gene interactions. Aptly named the anchored analysis toolkit, these algorithms use known interactions as anchor points for generating subgraphs, which are then analyzed for their graph structure. This results in clusters that might have otherwise been lost in noise. A main product of this thesis is a novel collection of algorithms to generate exact solutions to the maximum clique problem for graphs that are too large to fit within core memory. No other algorithms are currently known that produce exact solutions to this problem for extremely large graphs. A combination of in-core and out-of-core techniques is used in conjunction with a distributed-memory programming model. These algorithms take into consideration such pitfalls as external disk I/O and hardware failure and recovery. Finally, a web-based tool is described that provides researchers access the aforementioned algorithms. The Graph Algorithms Pipeline for Pathway Analysis tool, GrAPPA, was previously developed by the Langston Lab and provides the software needed to take raw microarray data as input and preprocess, analyze, and post-process it in a single package. GrAPPA also provides access to high-performance computing resources, via the TeraGrid.

Page generated in 0.2426 seconds