• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 77
  • 59
  • 28
  • 28
  • 9
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 534
  • 112
  • 96
  • 96
  • 70
  • 54
  • 54
  • 52
  • 50
  • 40
  • 38
  • 34
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Power distribution network modeling and microfluidic cooling for high-performance computing systems

Zheng, Li 07 January 2016 (has links)
A silicon interposer platform with microfluidic cooling is proposed for high-performance computing systems. The key components and technologies for the proposed platform, including electrical and fluidic microbumps, microfluidic vias and heat sinks, and simultaneous flip-chip bonding of the electrical and fluidic microbumps, are developed and demonstrated. Fine-pitch electrical microbumps of 25 µm diameter and 50 µm pitch, fluidic vias of 100 µm diameter, and annular-shaped fluidic microbumps of 150 µm inner diameter and 210 µm outer diameter were fabricated and bonded. Electrical and fluidic tests were conducted to verify the bonding results. Moreover, the thermal and signaling benefits of the proposed platform were evaluated based on thermal measurements and simulations, and signaling simulations. Compared to the conventional air cooling, significant reductions in system temperature and thermal coupling are achieved with the proposed platform. Moreover, the signaling performance is improved due to the reduced temperature, especially for long interconnects on the silicon interposer. A numerical power distribution network (PDN) simulator is developed based on distributed circuit models for on-die power/ground grids, package- and board- level power/ground planes, and the finite difference method. The simulator enables power supply noise simulation, including IR-drop and simultaneous switching noise, for a full chip with multiple blocks of different power, decoupling capacitor, and power/ground pad densities. The distributed circuit model is further extended to include TSVs to enable simulations for 3D PDN. The integration of package- and board- level power/ground planes enables co-simulation of die-package-board PDN and exploration of new PDN configurations.
212

Tailoring optical fibers for cell transfection

Ma, Nan January 2012 (has links)
Optical transfection is a promising technique for the delivery of foreign genetic material into cells by transiently changing the permeability of the cell membrane. Of the different optical light sources that have been used, femtosecond laser based transfection has been one of the most effective methods for optical transfection which is generally implemented using a free-space bulk optical setup. Here in this thesis, a few novel fabrication methods are devised to obtain easy and inexpensive fabrication of microlensed optical fibers, which can be used to replace traditional optical setup and perform femtosecond optical transfection. These fabrication methods offer the flexibility to fabricate a microlens which can focus femtosecond laser pulses at 800 nm to a small focal spot whilst keeping a relatively large working distance. In conventional optical transfection methods the foreign genetic material to be transfected is homogenously mixed in the medium. This thesis reports the first realization of an integrated optical transfection system which can achieve transfection along with localized drug delivery by combining lensed fiber based optical transfection system with a micro-capillary based microfluidic system. Finally, based on an imaging fiber (coherent optical fiber bundle), the first endoscope-like integrated system for optical transfection with subcellular resolution epifluorescence imaging was built. The transfection efficiency of these fiber based systems is comparable to that of a standard free-space transfection system. Also the use of integrated system for localized gene delivery resulted in a reduction of the required amount of genetic material for transfection. The miniaturized, integrated design opens a range of exciting experimental possibilities, such as the dosing of tissue slices to study neuron activities, targeted drug delivery, and in particular for using endoscope-like integrated systems for targeted in vivo optical microsurgery.
213

Development of a Microfluidic Platform to Investigate Effect of Dissolved Gases on Small Blood Vessel Function

Kraus, Oren 20 November 2012 (has links)
In this thesis I present a microfluidic platform developed to control dissolved gases and monitor dissolved oxygen concentrations within the microenvironment of isolated small blood vessels. Dissolved gas concentrations are controlled via permeation through the device substrate material using a 3D network of gas and liquid channels. Dissolved oxygen concentrations are measured on-chip via fluorescence quenching of an oxygen sensitive probe embedded in the device. Dissolved oxygen control was validated using the on-chip sensors as well as a 3D computational model. The platform was used in a series of preliminary experiments using olfactory resistance arteries from the mouse cerebral vascular bed. The presented platform provides the unique opportunity to control dissolved oxygen concentrations at high temporal resolutions (<1 min) and monitor dissolved oxygen concentrations in the microenvironment surrounding isolated blood vessels.
214

Polymer bonding by induction heating for microfluidic applications

Knauf, Benedikt J. January 2010 (has links)
Microfluidic systems are being used in more and more areas and the demand for such systems is growing every day. To meet such high volume market needs, a cheap and rapid method for sealing these microfluidic platforms which is viable for mass manufacture is highly desirable. In this work low frequency induction heating (LFIH) is introduced as the potential basis of a cost-effective, rapid production method for polymer microfluidic device sealing. Thin metal layers or structured metal features are introduced between the device s substrates and heated inductively. The surrounding material melts and forms a bond when cooling. During the bonding process it is important to effectively manage the heat dissipation to prevent distortion of the microfluidic platform. The size of the heat affected zone (HAZ), and the area melted, must be controlled to avoid blockage of the microfluidic channels or altering the channels wall characteristics. The effects of susceptor shape and area, bonding pressure, heating time, etc, on the heating rate have been investigated to provide a basis for process optimisation and design rules. It was found that the maximum temperature is proportional to the square of the susceptor area and that round shaped susceptors heat most efficiently. As a result of the investigations higher bonding pressure was identified as increasing bond strength and allowing the reduction of heating time and thus the reduction of melt zone width. The use of heating pulses instead of continuous heating also reduced the dimensions of melt zones while maintaining good bond strength. The size of the HAZ was found to be negligible. An analytical model, which can be used to predict the heating rate, was derived. In validating the model by numeric models and experiments it was found that it cannot be used to calculate exact temperatures but it does correctly describe the effect of different heating parameters. Over the temperature range needed to bond polymer substrates, cooling effects were found not to have a significant impact on the heating rate. The two susceptor concepts using thin metal layers (metal-plastic bonds) or structured metal features (plastic-plastic bonds) were tested and compared. While the metal-plastic bonds turned out to be too weak to be useful, the bonds formed using structured susceptors showed good strength and high leakage pressure. Based on the knowledge gained during the investigations a microfluidic device was designed. Different samples were manufactured and tested. During the tests minor leaks were observed but it was found that this was mainly due to debris which occurred during laser machining of the channels. It was concluded that induction bonding can be used to seal plastic microfluidic devices. The following guidelines can be drawn up for the design of susceptors and process optimisation: Materials with low resistivity perform better; For very thin susceptors the effect of permeability on the heating rate is negligible; The cross-sectional area of the susceptor should be as large as possible to reduce resistance; The thickness of the susceptor should be of similar dimensions to the penetration depth or smaller to increase homogeneity of heat dissipation; The shape of the susceptor should follow the shape of the inductor coil, or vice-versa, to increase homogeneity of heat dissipation; The susceptor should form a closed circuit; Higher bonding pressure leads to stronger bonds and allows reduced heating times; Pulsed heating performs better than continuous heating in terms of limited melt area and good bond strength. The drawbacks of the technique are explained as well: introducing additional materials leads to additional process steps. Also the structuring and placement of the susceptor was identified to be problematic. In this project the structured susceptor was placed manually but that is not feasible for mass manufacture. To be able to use the technique efficiently a concept of manufacturing the susceptor has to be found to allow precise alignment of complex designs.
215

Molecular mechanisms of acute axonal degeneration in the rat optic nerve

Zhang, Jiannan 11 November 2015 (has links)
No description available.
216

Developing multilayer microfluidic platforms and advancing laser induced fluorescent detection and electrochemical detection to analyze intracellular protein kinases, reactive nitrogen and oxygen species in single cells

Patabadige, Damith Randika E.W. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher T. Culbertson / Recent approaches in analytical separations are being advanced towards the “lab-on-a-chip” concept in which multiple lab functions are integrated into micro/nano fluidic platforms. Among the variety of separation techniques that can be implemented on microfluidic devices, capillary electrophoresis is the most popular as it provides high efficiency, simple, fast and low cost separations. In addition, integrating miniaturized fluid manipulation tools into microfluidic devices with separations is essential for a variety of biological applications. Chapter 1 discusses the fundamentals of capillary electrophoresis and miniaturized fluid manipulation tools and provides an over view of single cell analysis in microfluidics. In chapter 2, the integration of miniaturized peristaltic pumps into multilayer microfluidic platforms is discussed. In addition, device characterization, precise fluid control and high throughput single cell analysis are discussed. As a proof of principle, T-lymphocytes were loaded with two fluorescent probes Carboxyfluorescein diacetate (CFDA) and Oregon green (OG). Thousands of single cells were automatically transported, lysed on these devices and analytes from the lysate were electrophoretically separated. 1120 cells were analyzed over the course of 80 min (14 cells/min) and separation characteristics of analytes released from individual cells were investigated. In the third chapter, the development of microfluidic platforms for the electrochemical detection of nitric oxide (NO) and other reactive nitrogen species (RNS) at the single cell level is discussed. A microfluidic system was developed to perform rapid cell lysis followed by electrochemical detection. Miniaturized microband electrodes were designed and integrated with a microfluidic separation channel. Three alignment techniques (in-channel, end-channel and off-channel configurations) were used to detect the electrochemical response of the analyte of interest. Furthermore, a model analyte (CFDA) was used to demonstrate the potential of performing the simultaneous dual detection with electrochemical and laser induced fluorescence detection. In addition, the same microfluidic platform was adapted to detect intracellular superoxide using laser induced fluorescence. In the fourth chapter, the off-chip integration of optical fiber bridges with multilayer microfluidic chips is discussed. A multimode optical fiber (~10cm long) was integrated between the single cell lysing spot and a spot downstream of the separation channel in order to detect both intact cells and the analyte in the lysate. This technique was used to create two detection spots on the microfluidic platform with the use of a single excitation source and single detector. Fluorescently labeled T-lymphocytes were automatically transported and lysed in a manner similar to that described in chapter 2. Hundreds of single cells were analyzed and the absolute migration time was determined for the analytes in the lysate. In addition, the separation characteristics of fluorescently labeled protein kinase B peptide substrates were investigated. Furthermore, this technique was used to measure cell size and the velocity of intact cells (discussed in 5th chapter) by making use of a light tunneling concept available in multimode optical fibers. All the experiments presented in this dissertation exploit the use of multilayer microfluidic platforms to investigate intracellular components in single cells in a high throughput manner that has several advantages over current conventional techniques.
217

Ecoulements de suspensions concentrées de globules rouges en micro-canaux : étude expérimentale / Flows of concentrated suspensions of red blood cells in microchannels : an experimental study

Roman, Sophie 13 December 2012 (has links)
Le sang est une suspension concentrée (45 % en volume) de cellules déformables, les globules rouges, dans un liquide newtonien, le plasma. Dans la microcirculation, i.e. le sous-ensemble du système de circulation sanguine où s'effectuent les échanges de matière entre le sang et les tissus, les tailles de vaisseaux sont comparables à la taille d'un globule rouge (environ 10 µm). En conséquence, les effets dynamiques liés à la présence de ces cellules induisent des comportements rhéologiques complexes, qui jouent un rôle important dans le transport de l'oxygène vers les tissus. En particulier, aux bifurcations microvasculaires divergentes, les débits de globules rouges et de plasma peuvent se répartir de façon non proportionnelle entre les deux branches filles. La fraction volumique de globules rouges (hématocrite) dans l'une des branches filles est alors plus élevée que celle de la branche d'entrée, et la fraction volumique dans l'autre branche y est plus faible. Cet effet, connu sous le nom d'effet de séparation de phase, induit une très grande hétérogénéité de l'hématocrite d'un vaisseau à l'autre dans la microcirculation. Il induit également un couplage entre l'architecture du réseau microvasculaire et la dynamique de l'écoulement sanguin dans ce réseau. L'objectif de ce travail de thèse est d'étudier finement l'effet de séparation de phase in vitro, dans un régime représentatif des conditions physiologiques, au moyen de dispositifs microfluidiques modélisant les bifurcations microvasculaires et de suspensions de globules rouges. Dans ce but, un dispositif expérimental microfluidique a d'abord été élaboré. Puis, les aspects métrologiques spécifiques aux suspensions concentrées ont été abordés afin de quantifier les paramètres de l'écoulement. En particulier, la technique de dual-slit a été comprise et optimisée, assurant une mesure précise de profils de vitesse de globules rouges en microcanaux. Des métrologies spécifiques à nos conditions expérimentales ont également été mises en place pour déterminer l'hématocrite. Ces techniques ont été validées par vérification du principe de conservation de la masse entre les trois branches d'une bifurcation, et elles nous ont permis de caractériser les écoulements de globules rouges dans des micro-canaux de différentes tailles (10 à 100 µm), et ce pour de larges gammes de débits et de concentrations. Enfin, l'écoulement de suspensions de globules rouges a été étudié au niveau de micro-bifurcations, dans l'objectif de caractériser l'effet de séparation de phase pour des tailles de canaux et des gammes d'hématocrites qui n'ont pas été étudiés auparavant en conditions d'écoulement maîtrisées. / Blood is a concentrated suspension (45% by volume) of deformable red blood cells, flowing in a Newtonian fluid called plasma. The microcirculation is the part of the blood circulation system where the exchanges of material (e.g. nutrients, oxygen) between the blood and tissues take place. The microvessels are characterized by diameters less than 100 microns, which is similar in size to the size of a red blood cell ( 10 microns). As a result, the presence of these cells considerably influences the dynamics of microvascular flows and induces complex rheological behaviors. In particular, at diverging microvascular bifurcations, red blood cells and plasma may be nonproportionally distributed between two daughter vessels : one gets a higher red blood cell volume fraction (hematocrit) than the feeding vessel, while the other gets a lower one. This effect, known as the phase separation effect, causes a tremendous heterogeneity of the hematocrit among vessels in microvascular networks and induces a coupling between the microvascular architecture and the blood flow dynamics. The aim of this thesis is to investigate the phase separation effect in vitro, in physiological conditions, using red blood cell suspensions and microfluidic devices modeling microvascular bifurcations. For this purpose, a microfluidic experimental device was first developed. Then the metrological aspects specific to concentrated suspensions were addressed in order to quantify all the flow parameters. In particular, the dual-slit technique has been understood and optimized, ensuring accurate measurement of velocity profiles of red blood cells in microchannels. Measurement methods for our experimental conditions were also implemented to determine the hematocrit. All these techniques have been validated by verification of the principle of mass conservation between the three branches of a bifurcation. They allowed us to characterize the flow of red blood cells in microchannels of different sizes (10 to 100 microns) and for wide ranges of flow rates and concentrations. Finally, the flow of red blood cell suspensions was investigated at micro-bifurcations, with the aim of characterizing the phase separation effect for channel sizes and hematocrit ranges never studied in controlled flow conditions.
218

A UV detector for microfluidic devices

Weldegebriel, Amos January 1900 (has links)
Master of Science / Department of Chemistry / Christopher T. Culbertson / Chemical separation involves selective movement of a component out of a region shared by multiple components into a region where it is the major occupant. The history of the field of chemical separations as a concept can be dated back to ancient times when people started improving the quality of life by separation of good materials from bad ones. Since then the field of chemical separation has become one of the most continually evolving branches of chemical science and encompasses numerous different techniques and principles. An analytical chemist’s quest for a better way of selective identification and quantification of a component by separating it from its mixture is the cause for these ever evolving techniques. As a result, today there are numerous varieties of analytical techniques for the separation of complex mixtures. High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), Capillary Electrophoresis (CE) and Gel Electrophoresis are a few out of a long list. Each these techniques manipulates the different physical and chemical properties of an analyte to achieve a useful separation and thus certain techniques will be suited for certain molecules. This work primarily focuses on the use of Capillary Electrophoresis as a separation technique. The mechanism of separation in Capillary Zone Electrophoresis and principles of UV detection will discussed in chapter one. Chapter two contains a discussion about the application of Capillary Electrophoresis (CE) on microfluidc devices. This will include sections on: microfabrication techniques of PDMS and photosensitized PDMS (photoPDMS), a UV detector for microfluidic devices and its application for the detection of wheat proteins. In Chapter three we report the experimental part of this project which includes; investigations on the effect of UV exposure time and thermal curing time on feature dimensions of photoPDMS microfluidic device, investigations on the injection and separation performances of the device, characterization of a UV detector set up and its application for the separation and detection of wheat gliadin proteins. The results of these investigations are presented in chapter four.
219

Dynamiques d'imbibition en milieu confiné / Imbibition dynamics in confined media

Levaché, Bertrand 03 March 2014 (has links)
Ce travail de thèse expérimental porte sur les dynamiques d'imbibition en milieu confiné. Cette situation survient lorsqu'un fluide mouillant les parois d'un solide vient déplacer un second fluide non-miscible. La divergence des contraintes visqueuses au niveau de la ligne de contact avec le solide complexifie la description de la forme et de la dynamique d'invasion du ménisque qui ne peut se résumer, même aux échelles macroscopique du confinement solide, à l'avancement d'un front liquide homogène. L'absence de longueur caractéristique intrinsèque aux fluides nécessite de tenir compte des couplages entre écoulement et forme des interfaces à toutes les échelles, depuis le nanomètre (interactions moléculaires) jusqu'à l'échelle du confinement (une centaine de micromètres dans nos expériences). Ce caractère multi-échelle est au centre des travaux effectués durant cette thèse. A l'aide du développement de nouveaux outils microfluidiques, nous étudions quantitativement l'imbibition dans une géométrie de type Hele-Shaw. Une étude à la fois expérimentale et numérique nous permet de mettre en évidence l'existence d'une nouvelle transition d'entrainement. Une étude complète du modèle numérique nous permet ensuite d'unifier ce nouveau mode avec celui reporté jusqu'à présent dans la littérature. Nous nous intéressons aussi à l'imbibition dans des réseaux poreux modèle. Nous identifions alors expérimentalement un nouveau mode d'invasion généralisant l'entrainement obtenu précédemment. Ce scénario est piloté par l'écoulement en film de coin autour des obstacles constituant le poreux. Nous proposons alors un critère géométrique simple pour discriminer les différents modes d'invasions. / This experimental thesis deals with imbibition in confined media. This situation occurs when a fluid which preferentially wets the solid displaces another immiscible fluid. The divergence of the viscous stress at the contact line with the solid complicates the description of both the shape and the invasion dynamic of the meniscus that can no longer be described, even at the macroscopic length scale of the solid confinement, by only the displacement of a homogeneous liquid front. The absence of any intrinsic fluids length scale requires to take into account the coupling between the interface shape and the flow at all scales, from nanometers (molecular interaction) to solid confinement scale (hundred micrometers in our experiments). Multi-scale behavior will be the central point of this thesis. Using new microfluidics tools, we first made a quantitative study of imbibitions in Hele-Shaw geometry. We demonstrate a new class of liquid entrainment transition both experimentally and numerically. In addition, an extensive analysis of our numerical model shows that it consistently describes all scenarios that have been reported so far. We then study imbibitions in model porous media. We demonstrate a new invasion process, where the flow occurs along the corner of the porous? obstacles, that generalizes the previous entrainment. We finally propose a geometric criterion that discriminates between the different invasion scenarios.
220

Nanopartículas multifuncionais dispersáveis e suas potenciais aplicações em nanomedicina / Dispersable Multifunctional Nanoparticles and Their Potential Aplications in Nanomedicine

Cardoso, Roberta Mansini 27 June 2018 (has links)
O design de materiais na escala nanométrica está levando a sistemas com novas propriedades e aplicações as mais diversas, como em sistemas de diagnóstico e de tratamento inteligentes e sustentáveis. Melhorar a eficiência dos tratamentos de doenças através do desenvolvimento de fármacos mais eficientes e com menos efeitos colaterais, e agentes de contraste e de diagnóstico mais específicos e sensíveis para monitoramento preventivo precoce, é um dos principais objetivos da Nanomedicina. Todavia, a química de superfície necessária para realizar tais reações de funcionalização/conjugação de moléculas ainda está longe de ser adequadamente controlada, particularmente considerando-se a complexidade das biomoléculas e a estabilidade coloidal. Assim, nesta tese foram desenvolvidos processos de conjugação de nanopartículas de óxido de ferro (SPIONs) com um ou mais agentes co-funcionalizantes, gerando partículas mono, bi e multifuncionalizadas dispersáveis em meio aquoso. Os esforços foram concentrados no desenvolvimento de sistemas de diagnóstico e de entrega de fármacos baseados em nanopartículas, cujas propriedades precisam ser ajustadas pela conjugação de biomoléculas e espécies bioativas em sua superfície, num verdadeiro trabalho de engenharia a nível nanométrico/molecular. De fato, nanopartículas modificadas com moléculas co-funcionalizantes estabilizantes (glicerol-fosfato, glicose-fosfato, fosforiletanolamina, dopamina e tiron), agentes de vetorização que direcionam o nanoconjugado a células-alvo tumorais (ácido fólico e biotina), bem como com fármacos como metotrexato e ibuprofeno foram preparadas, e o efeito das mesmas sobre a eficiência de incorporação por células tumorais (HeLa e MCF-7) estudada. Os estudos de atividade biológica in vitro foram realizados em parceria com o Laboratório de Processos Fotoinduzidos e Interfaces (LPFI-IQUSP). Os resultadosobtidos confirmaram a possibilidade de se controlar a atividade biológica das nanopartículas por meio dos agentes funcionalizantes, abrindo perspectivas interessantes para o desenvolvimento de nanoagentes multifuncionais para teranóstica, conjugados com agentes de vetorização específicos (particularmente anticorpos e aptâmeros), além de agentes de contraste (radiofármacos, fluoróforos, contraste para IRM, etc.) e moléculas terapêuticas (antitumorais, anti-inflamatórios, dentre outros). Entretanto, diversos são os problemas associados aos processos químicos envolvendo a produção e funcionalização desses nanomateriais por processos convencionais em batelada, que tendem a ser demorados e apresentam dificuldade de controle dos parâmetros de reação e baixa reprodutibilidade, dificultando o escalonamento produtivo e a comercialização dos eventuais produtos. Uma estratégia promissora é o uso de reatores microfluídicos com projeto de canais adequado, além de atuadores e sensores que, juntos garantam excelente controle de processos e baixo consumo de energia e de reagentes. Assim, também foram desenvolvidos reatores microfluídicos para produção e funcionalização de nanopartículas de ouro, de forma a tornar os processos químicos programáveis, mais eficientes, controláveis e econômicos, em parceria com o Laboratório de Micromanufatura do Instituto de Pesquisas Tecnológicas (LMI-BIONANO/IPT). Essa parte do desenvolvimento foi realizando empregando a tecnologia de microfabricação em Low Temperature Co-fired Ceramics (LTCC), uma tecnologia versátil que possibilita a produção de dispositivos de diferentes geometrias em materiais cerâmicos de baixa reatividade e de baixo custo. Esses dispositivos podem tornar os processos de produção de nanopartículas multifuncionais dispersáveis suficientemente simples, versáteis e reprodutíveis para atender aos altos padrões de qualidade exigidos para produtos voltados para aplicações biomédicas / Materials design at nanoscale is leading us to intelligent systems with new properties and applications, such as more efficient diagnostic and treatment systems. Improving the treatment of diseases by the development of more specific and efficient drugs, displaying fewer or no side effects, conjugated with sensitive contrast/diagnostic agents for early preventive monitoring and treatment is one of the main goals of the Nanomedicine. However, the knowledge on surface chemistry required to perform such molecular functionalization/conjugation reactions still is far from being adequately controlled, particularly considering the complexity of biomolecules and reaching colloidal stability. Thus, in this thesis, processes of conjugation of iron oxide nanoparticles (SPIONs) with one or more co-functionalizing agents have been developed so as to generate mono, bi and multi-particles dispersible in aqueous medium. Efforts were specifically focused on the development of drug delivery and diagnostic systems based on nanoparticles whose properties must be adjusted by the conjugation of biomolecules and bioactive species on their surface, in a truly nano/molecular scale engineering work. In fact, nanoparticles modified with stabilizing co-functionalizing molecules (glycerolphosphate, glucose-phosphate, phosphorylethanolamine, dopamine and tiron), targeting agents (folic acid and biotin) to guide itself and concentrate in specific tumor cells, as well as with drugs such as methotrexate and ibuprofen were prepared, and their effect on the efficiency of uptake by tumor cells (HeLa and MCF-7) studied. In vitro biological activity studies were performed in collaboration with the Laboratory of Photo Induced Processes and Interfaces (LPFI-IQUSP). The results confirmed the possibility of controlling the biological activity of nanoparticles by anchoring suitable functionalizing agents in an additive way, opening interesting new perspectives for the development ofmultifunctional theranostics nanoagents, conjugated with specific vectorization agents (particularly antibodies and aptamers), as well as diagnostic (radiopharmaceuticals, fluorophores, MRI contrast, etc.) and therapeutic agents (antitumor, anti-inflammatory, among others). However, there are several problems associated with the production and functionalization of these nanomaterials by conventional batch processes, which tend to be time consuming and difficult to control, as confirmed by their low reproducibility, making it difficult to produce and commercialize the eventual products. A promising strategy is the use of microfluidic reactors with suitable channel designs, as well as actuators and sensors that, together, ensure excellent process control and low energy and reagent consumption. Thus, microfluidic reactors were also developed for the production and functionalization of gold nanoparticles in order to make chemical processes more predictable, efficient, controllable and economical, in partnership with the Micromanufacturing Laboratory of the Institute of Technological Research (LMI-BIONANO/IPT). This part of the development was accomplished by employing the Low Temperature Co-fired Ceramics (LTCC) microfabrication technology, a versatile technology that enables the production of devices of different geometries in ceramic materials of low reactivity and of low cost. These devices can make the production processes of dispersible multifunctional nanoparticles simple, versatile and reproducible enough to meet the high standards of quality required for products for biomedical applications

Page generated in 0.0337 seconds