• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 90
  • 27
  • 25
  • 21
  • 19
  • 18
  • 18
  • 15
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rochas albitizadas e albititos relacionados a mineralizações de estanho da Província Estanífera de Goiás : caracterização petrológica e gênese

Sirqueira, Ana Rita Félix 24 October 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação, 2014. / Submitted by Marília Freitas (marilia@bce.unb.br) on 2015-10-29T13:02:43Z No. of bitstreams: 1 2014_AnaRitaFelixSiqueira.pdf: 6264175 bytes, checksum: 6bbe57656d5940a6644ef42c7dcfb16d (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-12-15T18:29:16Z (GMT) No. of bitstreams: 1 2014_AnaRitaFelixSiqueira.pdf: 6264175 bytes, checksum: 6bbe57656d5940a6644ef42c7dcfb16d (MD5) / Made available in DSpace on 2015-12-15T18:29:16Z (GMT). No. of bitstreams: 1 2014_AnaRitaFelixSiqueira.pdf: 6264175 bytes, checksum: 6bbe57656d5940a6644ef42c7dcfb16d (MD5) / Os albititos mineralizados em estanho localizados nos garimpos Pelotas e Boa Vista, pertencentes à Província Estanífera de Goiás (PEG), cortam monzogranitos e tonalitos pertencentes à Suíte Aurumina e xistos da Formação Ticunzal. Os albititos são constituídos por albita, quartzo, cassiterita, apatita, K-feldspato e muscovita primária. Texturalmente apresentam alinhamento de “ripas” de albita e textura snowball, interpretados como texturas típicas de albititos de origem magmática. Os tonalitos, monzogranitos e xistos foram divididos em fácies: biotita-muscovita tonalito, muscovita-biotita tonalito, biotita-muscovita monzogranito, muscovita-biotita monzogranito, granada-clorita-biotita-quartzo xisto e grafita-clorita xisto. Os albititos são metaluminosos a peraluminosos, enquanto os monzogranitos e tonalitos são fortemente peraluminosos. Os albititos são enriquecidos em Na2O, Al2O3 e P2O5, contêm teores moderados de CaO e são empobrecidos em K2O, TiO2, Fe2O3 e MgO. Com relação aos elementos-traço, são enriquecidos em Sn, Ta, Rb, Nb e Zr e empobrecidos em Sr, Ba e Th. São enriquecidos em elementos terras raras leves (ETRL) em relação aos elementos terras raras pesados (ETRP). As anomalias de Eu são ausentes ou muito discretas, levemente positivas. Os tonalitos e monzogranitos são enriquecidos em TiO2, Fe2O3, MgO, CaO e K2O e empobrecidos em Al2O3, Na2O, P2O5, SnO2, TaO2, Rb, Nb e Zr. Os padrões de ETRs para os granitos e tonalitos mostram que são enriquecidos em ETRL e empobrecidos em ETRP. As anomalias de Eu para os monzogranitos são muito discretas, podendo ser levemente positivas ou negativas. Os tonalitos apresentam pronunciada anomalia positiva de Eu. Análises em microssonda eletrônica permitiram classificar a biotita do muscovita-biotita tonalito e do muscovita-biotita monzogranito como siderofilita, com razão Fe/(Fe+Mg) entre 0,58 a 0,71 a.f.u. e conteúdo de AlIV entre 2,1 a 3,3 a.f.u.. Composicionalmente, classifica-se como biotita de granitos peraluminosos. A muscovita dos albititos é mais enriquecida em Na2O e SiO2 e empobrecida em MgO, Fe2O3, Al2O3 e TiO2, e a muscovita da fácies biotita-muscovita tonalito é enriquecida em MgO, Fe2O3, Al2O3 e TiO2 e empobrecida em Na2O e SiO2. Os valores de TiO2 da muscovita secundária é sempre inferior a 0,5%. Entretanto, a muscovita primária possui teores variáveis de TiO2, desde quase nulos a 1%. A cassiterita é euedral a subedral, maclada, zonada e com forte pleocroísmo, com composições muito puras, com o Sn substituído principalmente por Nb e Ta. O plagioclásio apresenta composição de albita-oligoclásio (Ab77-99An22-1Or1) nos monzogranitos e de albita (Ab90-99An10-0,6Or0,4) nos tonalitos e albititos. A apatita é classificada como fluorapatita e é interpretada como sendo ígnea. Dados de isótopos de oxigênio em pares de albita e cassiterita mostraram que os albititos foram cristalizados em temperatura que varia de 653 a 1016ºC. As composições isotópicas do fluido calculadas para os albititos, 9,17 a 9,35‰ para o albitito do garimpo Pelotas e 8,66 a 9,72‰ para o albitito do garimpo Boa Vista, sugerem fluido de origem magmática. Valores de 40Ar/39Ar em muscovita dos albititos do garimpo Boa Vista resultaram em idade-platô de 1996,55±12,96 Ma, interpretada como idade da cristalização da muscovita. Esses dados geocronológicos permitem propor que os albititos da área foram formados durante o Paleoproterozóico, sendo correlacionados às fases tardias do magmatismo da Suíte Aurumina (2,12-2,17 Ga – U-Pb em zircão). Os dados mineralógicos, geoquímicos, de química mineral e isotópicos obtidos permitiram classificar as mineralizações de Sn hospedadas em albititos dos garimpos Pelotas e Boa Vista como magmáticas, associadas a um sistema granítico peraluminosos rico em boro, do tipo LCT. Os dados aqui apresentados permitem concluir que os albititos estudados são de origem magmática, tendo sido formados por cristalização de um magma altamente sódico, sendo que esse magma muito evoluído passou por vários processos de cristalização fracionada. Os tonalitos e monzogranitos mostraram-se também relativamente ricos em Na2O, o que é evidenciado pela química do plagioclásio. Essa composição pode estar ligada ao baixo grau de fusão de rochas metassedimentares que deram origem a essas rochas. A ordem de cristalização sugerida para as rochas estudadas é monzogranito-tonalito-albitito. Os resultados obtidos no presente trabalho demonstram que, além de conter mineralização de estanho hidrotermal, hospedada em greisens e geneticamente associada ao magmatismo granítico intraplaca de aproximadamente 1,7 Ga, a Província Estanífera de Goiás possui concentrações econômicas de estanho magmáticas, hospedadas em albitito ígneo e formadas por cristalização fracionada de granitos peraluminosos da Suíte Aurumina, de aproximadamente 2,0Ga. Esses resultados, portanto, ampliam as possibilidades de fonte de estanho na Província Estanífera de Goiás e têm implicações para o potencial econômico da Província. Estudos experimentais ou petrológicos adicionais devem ser realizados para avaliar a existência de relação genética entre o magmatismo intraplaca e o magmatismo sincolisional e, por conseguinte, entre a concentração hidrotermal e a magmática de estanho na Província Estanífera de Goiás. Sugerem-se, ainda, estudos para verificar o papel dos xistos da Formação Ticunzal na gênese dos granitos peraluminosos e na fonte de estanho na Província Estanífera de Goiás. ______________________________________________________________________________________________ ABSTRACT / The tin-mineralized albitites from the Pelotas and Boa Vista artisanal mines, in the Goiás Tin Province (GTP), cut the granites and tonalities from the Aurumina Suite and schists from the Ticunzal Formation. The albitites consist of albite, quartz, cassiterite, apatite, K-feldspar and primary muscovite. Texturally they contain alignment of albite “laths” and snowball texture, interpreted as typical of albitites from magmatic origin. The tonalites, granites and schists were divided in facies: biotite-muscovite tonalite, muscovite-biotite tonalite, biotite-muscovite monzogranite, muscovite-biotite monzogranite, garnet-chlorite-biotite-quartz schist and graphite-chlorite schist. The albitites are metaluminous to peraluminous,while the granites and tonalites are strongly peraluminous. The albitites are enriched in Na2O, Al2O3 and P2O5, contain moderate levels of CaO and are depleted in K2O, TiO2, Fe2O3 and MgO. With respect to trace elements, they are enriched in Sn, Ta, Rb, Nb and Zr and depleted in Sr, Ba and Th. The albitites are enriched in light rare earth elements (LREE) in relation to heavy rare earth elements (HREE). Eu anomalies are absent or very smooth and slightly positive. The tonalites and monzogranites are enriched in Al2O3, TiO2, Fe2O3, MgO, CaO and K2O and depleted in Na2O, P2O5, SnO2, TaO2, Rb, Nb and Zr. The REE patterns for the granites and tonalite shows enrichment in LREE and depletion in HREE. Eu anomalies for the monzogranites are very discrete and can be slightly positive or negative. The tonalites have a pronounced positive Eu anomaly. Microprobe analyzes allowed classifying the biotite from the muscovite-biotite tonalite and biotite-muscovite monzogranite as siderophyllite, with Fe/(Fe + Mg) between 0.58 to 0.71 a.f.u. and AlIV content between 2.1 and 3.3 afu. It is compositionally classified as biotite from peraluminous granites. Muscovite from the albitites have high SiO2 and Na2O contents and low MgO, Fe2O3, Al2O3 and TiO2, while muscovite from the biotite-muscovite tonalite facies are enriched in MgO, Fe2O3, TiO2 and Al2O3 and depleted in Na2O and SiO2. The TiO2 values of secondary muscovite are always less than 0.5%. However, primary muscovite has variable amounts of TiO2, from almost zero to 1%. Cassiterite forms strongly pleochroic, twinned and zoned euhedral to subhedral crystals, and has very pure composition, with Sn being replaced mostly by Nb and Ta. Plagioclase has composition of albite-oligoclase (Ab77-99An22-1Or1) in monzogranites and of albite (Ab90-99An10-0,6Or0,4) in the tonalites and albitites. Apatite is classified as fluorapatite,and is interpreted as igneous. Oxygen isotope data in pairs of albite and cassiterite showed thatalbitites were crystallized in a temperature range of 653-1016°C. The isotopic compositions of the fluid calculated for the albitites, 9.17 to 9.35‰ for Pelotas mine and from 8.66 to 9.72‰ for the Boa Vista mine, suggest that the fluid is of magmatic origin. 40Ar/39Ar values obtained in muscovite from albitite of the Boa Vista mine resulted in plateau age of 1996.55 ± 12.96 Ma, interpreted as the crystallization age of the muscovite. This allows the proposition that albitites have been formed during the Paleoproterozoic, and can be correlated with the late stages of the Aurumina magmatic Suite (2.12 to 2.17 Ga - U-Pb zircon). The mineralogical, geochemical and isotopic data obtained in this research allow classify the tin mineralization hosted in the albitites of Pelotas and Boa Vista mines as magmatic, associated with a peraluminous granitic system rich in boron, of LCT type. The data presented here allow conclude that the studied albitites are of magmatic origin, formed by crystallization of a highly evolved and sodic magma, and which underwent various steps of fractional crystallization. Tonalites and monzogranites are also relatively rich in Na2O, which is evidenced by plagioclase chemistry. This composition may be related to low amount of fusion of the metasedimentary rocks that gave rise to these rocks. The crystallization order suggested for the studied rocks is monzogranite-tonalite-albitite. The results obtained in this study demonstrate that, besides containing hydrothermal tin mineralization, hosted in greisen and genetically associated with the granitic intraplate magmatism of approximately 1.7 Ga, the Goiás Tin Province has economic concentration of magmatic tin, hosted in igneous albitite formed by fractional crystallization of peraluminous granites from the Aurumina suite, of approximately 2.0 Ga. These results thus increase the possibilities of tin source in the Goiás Tin Province and have implications for the economic potential of the Province. Additional petrological or experimental studies are encouraged to evaluate the existence of genetic relationship between the intraplate and sin-colisional magmatism and, therefore, between hydrothermal and magmatic concentration of tin in the Goiás Tin Province. Further studies to verify the role of the Ticunzal Formation schists in the genesis of the peraluminous granites and tin in the Goiás Tin Province are also suggested.
12

Gênese e controles da mineralização secundária de P, Ti e ETR no complexo alcalino carbonatítico de Salitre, MG

Araújo, Ivan Mendes Caixeta de Pamplona 30 March 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, 2015. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2015-10-28T12:11:43Z No. of bitstreams: 1 2015_IvanMendesCaixetaPamplonaAraujo.pdf: 7460725 bytes, checksum: e06bc3cb6fd16c8fb2bcc93f3bc23544 (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2016-04-07T13:27:12Z (GMT) No. of bitstreams: 1 2015_IvanMendesCaixetaPamplonaAraujo.pdf: 7460725 bytes, checksum: e06bc3cb6fd16c8fb2bcc93f3bc23544 (MD5) / Made available in DSpace on 2016-04-07T13:27:12Z (GMT). No. of bitstreams: 1 2015_IvanMendesCaixetaPamplonaAraujo.pdf: 7460725 bytes, checksum: e06bc3cb6fd16c8fb2bcc93f3bc23544 (MD5) / O complexo alcalino-carbonatítico de Salitre I, II e III, na Província Ígnea do Alto Paranaíba (APIP), é composto por múltiplas intrusões onde predominam bebedouritos, com diques anelares de carbonatitos e foscoritos subordinados. Sobre o complexo se desenvolveu um espesso manto de intemperismo que alterou a rocha original e propiciou a remobilização e concentração de fosfato, titânio e elementos terras raras (ETR) em teores econômicos. A partir de sondagem exploratória sobre a porção bebedourítica do complexo de Salitre I, o horizonte de alteração intempérica do depósito e a mineralogia associada à mineralização secundária são descritos em detalhe. O perfil de intemperismo de Salitre I, como em outros depósitos da APIP, pode ser dividido em rocha fresca, rocha alterada, isalterita e aloterita, a partir de observações macroscópicas e de campo. Neste trabalho a designação rocha fresca indica rocha não intemperizada, independentemente da existência ou não de alteração metassomática prévia. Estudos mineralógicos e texturais em lâminas delgadas polidas obtidos por microscopia ótica e eletrônica associados a análises de rocha total e química mineral indicam que esta divisão se reflete na textura do manto de intemperismo e sua mineralogia. A rocha fresca é composta por olivina-bebedouritos e perovskita-bebedouritos com diferentes graus de metassomatismo causado por intrusões de cálcio e magnesiocarbonatito. Dentre outras feições, a alteração metassomática resulta na neoformação de carbonato e magnetita, alteração de silicatos magnesianos primários (olivina, diopsídio, flogopita) para tetraferriflogopita, e conversão de perovskita para anatásio. Cumulados foscoríticos ricos em flúor-apatita também são observados no intervalo de rocha fresca das sondagens estudadas. O horizonte de rocha alterada é caracterizado pelo aparecimento de precipitações de óxidos-hidróxidos de ferro no contato entre os grãos de carbonato e perda de potássio em cristais de flogopita e tetraferriflogopita. No horizonte isalterítico o carbonato é completamente lixiviado e ocorre a concentração residual de minerais resistentes ao intemperismo, bem como a precipitação de apatita secundária como agregados cristalinos nas fraturas da apatita ígnea. Este horizonte pode ser dividido em isalterito micáceo de base (manutenção da morfologia dos cristais de flogopita, mesmo quando está alterada para vermiculita), micáceo de topo (rico em argilas do grupo da vermiculita, com óxidos-hidróxidos de Fe subordinados) e oxidado (rico em óxidos-hidróxidos de ferro, com argila subordinada). Em direção ao topo a perovskita apresenta progressivamente maior intensidade de alteração para anatásio supergênico, frequentemente associado com palhetas de monazita secundária. No horizonte aloterítico a apatita não é mais estável, sendo substituída por fosfatos secundários do grupo da crandalita, e a perovskita está completamente alterada para anatásio. Este horizonte é dividido em aloterita de base (grande volume anatásio e monazita em meio a óxidos-hidróxidos de ferro) e aloterita de topo (rica em caolinita e gibbsita). Análises químicas totais refletem a mineralogia descrita, e os horizontes de alteração apresentam assinatura geoquímica similar à rocha original. Teores de ETR tendem a se intensificar de forma progressiva até a aloterita de base. A mineralização de fosfato resulta principalmente da concentração residual de apatita primária dos bebedouritos e foscoritos no horizonte isalterítico, com apatita secundária subordinada. A mineralização de titânio está associada à concentração residual de anatásio no horizonte aloterítico de base, gerado a partir dos grandes volumes de perovskita encontrados nos bebedouritos. Em geral, os ETR estão concentrados no horizonte aloterítico de base, contidos principalmente em monazita. Em solos derivados de bebedouritos, como os estudados no presente trabalho, monazita geralmente ocorre associada com anatásio. Nesses casos, ela é gerada a partir da liberação de ETR da perovskita, durante a conversão desta em anatásio, seja por processos hidrotermais ou pedogenéticos, complexados com o fosfato disponível a partir da lixiviação de apatita, que se torna instável no horizonte aloterítico. Outro modo de ocorrência de monazita é como produto metassomático formando pseudomorfos sobre cristais de carbonato. A concentração residual de monazita desta variedade é a responsável pelos maiores teores de ETR encontrados no horizonte intempérico. / The Salitre complex in the Alto Paranaíba Igneous Province (APIP) is an ultrapotassic carbonatite- and phoscorite-bearing alkaline multi-intrusion complex, divided into three main outcropping bodies (Salitre I, II, and III). The weathering profile developed over the complex remobilized and concentrated fosfate, rare earth elements (REE) and titanium to economic levels. Exploratory drill cores over the bebedouritic portion of the deposit allows the detailing of the weathering profile, its mineralogy and secondary mineralization. Salitre I weathering profile, as in other APIP deposits, is divided in fresh rock, altered rock, isalterite and alloterite, based on macroscopic and field observations. In this work, fresh rock designation is used to fresh rock not affect by weathering processes, even considering the presence of metassomatic alteration. Mineralogical and textural analysis in the optical and electronic microscope associated with mineral chemistry, whole rock and alterite geochemistry confirms that this division is reflected in the weathering profile texture and mineralogy. Fresh Rock Horizon contains olivine-bebedourites and perovskite-bebedourites with different degrees of calcium and magnesiocarbonatite metassomatism. Metassomatic alteration generates newly formed carbonate and magnetite; modify the primary silicate minerals (olivine, diopside and phlogopite) and converts perovskite to anatase. F-apatite rich phoscorite cumulates are also described in fresh rock samples. Altered Rock Horizon is characterized by precipitation of iron oxide/hydroxides in the contact surface of carbonate grains. Phlogopite and tetraferriphlogopite crystals shows signs of K loss. Carbonate is completely weathered in the isalteritic horizon, and weathering-resistant minerals are concentrated. Secondary apatite precipitates as crystalline aggregates in the fractures of the igneous apatite. This horizon is divided in Lower Micaceous Isalterite (overall phlogopite morphology is maintained, even when weathered to vermiculite), Upper Micaceous Isalterite (rich in vermiculite and subordinated iron oxides/hydroxides) and Oxidized Isalterite (rich in iron oxides/hydroxides and subordinated clay minerals). Perovskite alteration to secondary anatase intensifies upwards and it is frequently associated with secondary monazite Apatite is no longer stable at Alloterite level, being replaced by crandallite group secondary phosphates. Perovskite is completely weathered to anatase at this level. The alloterite horizon is divided in Lower Alloterite (large anatase and monazite volumes immersed in iron oxydes/hydroxides) and Upper Alloterite (rich in kaolinite and gibbsite). Whole rock and alterite chemical analyses reflect the mineralogy, with weathered horizons chemical signature similar to the fresh rock. Phosphate mineralization results mainly from residual accumulation of igneous apatite from bebedourites and phoscorites; secondary apatite generated from weathering processes is subordinated. Titanium mineralization results from residual accumulation of anatase in Lower Alloterite, weathered from large perovskite volumes found in bebedourites. REE values increase up to the Lower Alloterite Horizon, contained mainly in monazite. Monazite and anatase are closely associated in alterites derived from bebedourites. Monazite is generated from REE release of perovskite structure during the conversion to anatase, both from hydrothermal or pedogenetic processes, complexed with the phosphate available from apatite weathering. Metassomatic pseudomorphic monazite over carbonate crystals was detected and is responsible for the highest REE grades found in the weathering profile.
13

Mineralização in vitro de matrizes colagênicas derivadas de tendões calcâneos bovinos e de avestruz / In vitro mineralization of anionic collagen scaffolds prepared from bovine and ostrich calcaneous tendons

Klaus Giovanelli Kirschbauer 26 November 2009 (has links)
Um dos maiores desafios da ortopedia moderna é recuperar o tecido ósseo que tenha sido perdido por motivo de doença ou acidente. Na busca de substitutos para os enxertos, tem-se utilizado comumente biomateriais para recuperação desse tecido. Um dos vários tipos de biomateriais usados são os preparados à base de colágeno. Além de desempenhar papel importante na estrutura dos tecidos, o colágeno é capaz de orientar a formação de tecidos em desenvolvimento fato altamente favorável na sua utilização como biomaterial. Uma nova vertente de pesquisa do processo de mineralização de matrizes colagênicas que vem sendo desenvolvida é a analise de como a organização do tecido interfere no modo como ocorre esse processo de deposição. O uso do tendão vem sido pesquisado devido ao fato de ser um tecido extremamente organizado, com as fibras colagênicas alinhadas por toda a sua extensão. Este trabalho teve como objetivo a preparação e caracterização de matrizes de colágeno tipo I, oriundas de tendão bovino (TB) e avestruz (TA) após a hidrólise alcalina e mineralização. Os tendões foram colocados em solução alcalina contendo sais de K+, Na+ e Ca2+ por 72, 96 e 120 h a 25°C e depois equilibrados em solução de sais, lavados em H3BO3, EDTA e água. As matrizes resultantes foram então mineralizadas em soluções de CaCl2 0,2 mol L-1, pH = 7,4 e de Na2HPO4 0,12 mol L-1 pH = 9,0 durante 6 h, ocorrendo a troca de soluções a cada 30 min. As matrizes antes e após mineralização foram congeladas, liofilizadas e submetidas à análise termogravimétrica (TG), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV), espectroscopia no infra-vermelho (FT-IR) e dispersão de energia por raios-X (EDX). DSC mostrou que não houve desnaturação do colágeno durante o processo de tratamento alcalino e mineralização. A análise termogravimétrica mostrou que houve deposição de fosfato de cálcio, com o valor dependendo do número de ciclos de mineralização. MEV mostrou que essa mineralização não é uniforme, ocorrendo a formação de aglomerados. FT-IR e EDX mostrou que o fosfato de cálcio depositado provavelmente seja hidroxiapatita, mas não em sua estrutura estequiométrica. / One of greatest challenges of modern orthopedics is to restore bone tissue that has been lost due to sickness or accident. Searching for substitutes for grafts, biomaterials have been commonly used for recovery of bone tissue. Between different types of biomaterials, several are based on collagen. In addition to have important role in tissue structure, collagen is able to guide the formation of tissues, a highly favorable fact in its use as biomaterial. A possible research in collagen scaffolds mineralization is the analysis of how tissue organization interferes in deposition process. The tendon has been used because it is a highly organized tissue, with collagen fibers lined on its structure. This research aims the preparation and characterization of type I collagen scaffolds, prepared from bovine tendon (TB) and ostrich tendon (TA) after alkaline hydrolysis and mineralization. Tendons were maintained in alkaline solution containing K+, Na+ and Ca2+ ions for 72, 96 and 120 hours at 25°C and then equilibrated in salt solution, washed with H3BO3, EDTA and water. The resulting matrices were then mineralized in 0.2 mol L-1, pH = 7.4 CaCl2 solution and 0.12 mol L-1 Na2HPO4 pH = 9.0 for 6 h, changing solutions after 30 minutes. The matrices before and after mineralization were frozen, lyophilized and subjected to thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDS). DSC showed that the collagen was not denaturated by alkaline treatment process and mineralization. TG analysis showed deposition of calcium phosphate on the scaffolds, with values depending on the number of mineralization cycles. SEM showed that the mineralization is not uniform, forming clusters of phosphate crystals. FT-IR and EDS showed that the deposited calcium phosphate is probably hydroxyapatite, but not in its stoichiometric structure.
14

Mineralização in vitro de matrizes de colágeno aniônico derivadas de tecidos biológicos / In vitro mineralization of anionic collagen matrices

Thelma Matuura de Batista 07 November 2008 (has links)
A reconstrução de defeitos ósseos é um problema que afeta milhões de pessoas, que a medicina tenta resolver. Uma alternativa para a solução deste problema tem sido o desenvolvimento de biomateriais que atuem no processo de reparação óssea. O colágeno é um polímero de origem natural capaz de promover cicatrização e regeneração óssea e juntamente com a hidroxiapatita são os principais componentes encontrados no tecido ósseo. Vários trabalhos têm sido reportados com matrizes mineralizadas de colágeno tipo I em diferentes formas como em géis, membranas e esponjas, mas a mineralização in vitro de matrizes acelulares obtidas de tecidos biológicos sem a perda da estrutura colagênica não tem sido descrito. Este trabalho teve como objetivo a mineralização in vitro e a caracterização de matrizes de colágeno aniônico obtidas de pele porcina, pericárdio bovino e serosa porcina. Os tecidos foram tratados em temperatura ambiente com solução alcalina por períodos variáveis de 0 à 96h e mineralizados pelo processo de imersão alternada. Os materiais obtidos foram caracterizados pela avaliação preliminar da citotoxicidade in vitro, termogravimetria (TG/DTG), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV), dispersão de raios X (EDS), difração de raios X (DRX) e absorção no infravermelho (FT-IR). Não foi observada citotoxicidade em nenhuma das matrizes avaliadas, contudo foi necessário um pré-tratamento nas matrizes de pele porcina para remoção de gordura. Os resultados de DSC mostraram a integridade da matriz colagênica após o tratamento alcalino. O aumento no tempo desse tratamento diminui a temperatura de desnaturação sendo observado um efeito maior nas matrizes de pele porcina seguidas por pericárdio bovino e serosa porcina. A mineralização induz a um aumento na temperatura de desnaturação em todos os casos. As curvas TG apresentaram perdas de massa relacionadas à água presente no material, decomposição da proteína e carbonização do material orgânico e um resíduo após 750 °C que foi associado ao material inorgânico presente na forma de hidroxiapatita, sendo as matrizes de serosa porcina as de maior teor de mineralização. As matrizes mineralizadas tendem a um aumento na estabilidade térmica do colágeno quando comparadas com as matrizes hidrolisadas. Os espectros FT-IR mostraram a presença de íons fosfatos e a interação de íons cálcio com o colágeno. As relações Ca/P obtidas por EDS foram aquelas esperadas em comparação com o valor teórico para hidroxiapatita (HA) e resultados de DRX confirmaram a obtenção de HA amorfa como principal produto de mineralização. Pelas fotomicrografias obtidas por MEV pôde-se observar que as fibras de colágeno tornam-se mais desestruturadas quando há um aumento no tempo de hidrolise e que a deposição de sais ocorreu de forma heterogênea, disposta em aglomerados esféricos no formato de agulhas por toda a superfície e interior, exceto para matrizes derivadas de pele porcina que não são mineralizadas internamente devido a sua espessura. Os resultados obtidos demonstraram que é possível a mineralização in vitro de matrizes de colágeno tipo I obtidas de diferentes tecidos biológicos em diferentes tempos de hidrólise, produzindo um material com potencial de uso para regeneração óssea. / The reconstruction of osseous defects is still a problem that affects millions of people and medicine tries to solve it. One alternative to solve these problems has been the development of biomaterials that can be used as inductors in the osseous repair process. Collagen is a natural polymer able to promote healing and bone regeneration, and among hydroxyapatite (HA) is the main component found in bone tissue. Several mineralized collagen scaffolds are described in literature, in the form of gel, membranes and films, however, in vitro mineralization of acellular matrices, obtained from biological tissues without the loss of collagenic structure, has not been reported. The objective of this work was the mineralization and characterization of anionic collagen matrices obtained from porcine skin, bovine pericardium and porcine serosa. Biological tissues were treated at room temperature for 0-96h in alkaline solution and mineralized by alternate soaking method. Materials were characterized by preliminary assay of in vitro cytotoxicity, differential scanning calorimetry (DSC), termogravimetric analysis (TG/DTG), scanning electronic microscopy (SEM), energy dispersive x-ray analysis (EDS), x-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). No cytotoxicity was observed in any of the evaluated matrices; however, a pre-treatment of porcine skin matrices, for fat removal, was necessary. DSC results showed the integrity of collagen matrices after alkaline treatment. Denaturation temperature is dependent of time of alkaline treatment, and this effect is greater for porcine skin matrix, followed by bovine pericardium and porcine serosa. TG/DTG curves showed weight losses associated with release of water, degradation of protein structure and combustion of residual organic components. Residues were obtained at 750°C and associated to hydroxyapatite, being porcine serosa matrix the most mineralized. All mineralized matrices showed an increase in collagen thermal stability when compared to hydrolyzed matrices. FTIR spectra showed the presence of phosphate ions and the interaction of calcium ions with collagen. Ca/P ratios obtained by EDS were as expected when compared with literature values for HA, and RDX results confirmed amorphous HA as the main mineralization product. MEV analysis showed that collagen fibers were more affected for longer hydrolysis times, and that salt deposition was heterogeneous, with crystals grouped in spherical agglomerates in a needle-like shape throughout surface and inner, except for porcine skin derived matrices that were not internally mineralized due their width. Obtained results demonstrated that in vitro mineralization of type I collagen matrices, using different sources of biological tissues and hydrolysis time was possible, producing a material with potential to be used in bone regeneration.
15

Inibidor de nitrificação adicionado ao solo com cama de aviário e sua influência na dinâmica do nitrogênio e do carbono / Nitrification inhibitor added to soil with poutry manure influencing nitrogen and carbon dynamics

Ballem, Andressa 31 August 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nitrification inhibitors can reduce the potential for environmental contamination of animal wastes, relatively to nitrate (NO3 -) leaching and nitrous oxide (N2O) emission. However, this strategy has not yet been sufficiently evaluated by research, especially with poultry litter (PL). Therefore, the objective of this study was to evaluate the effect of the product "Agrotain Plus" (AP), containing 81% of dicyandiamide (DCD), on the nitrification inhibition, ammonia (NH3) volatilization and carbon (C) and nitrogen (N) PL mineralization. Two laboratory experiments were conducted, using a Hapludalf soil collected in the 0-10 cm layer. In one experiment, conducted for 54 days, the treatments consisted of PL (4.7 Mg ha-1, dry basis) incorporated in the soil, without and with AP doses (3.5, 7.0 and 14 kg ha-1), and without PL or AP (control). In the other experiment, conducted for 69 days had all these treatments plus two additional treatments of CA on the soil surface, without and with AP (7 kg ha-1). The AP delayed NO3 - production in soil, and this inhibitory effect was more intense at the highest dose of AP (14 kg ha-1). NH3 volatilization occurred only when PL remained on the soil surface and was favored by the addition of AP. The AP addition increased PL C- and Nmineralization by 4 and 28%, respectively. The results of this study indicated that dicyandiamide (DCD), contained in the product Agrotain Plus, reduces the nitrification rate of PL ammonia in soil and could be a strategy to preserve the N of this organic material and reduce potential pollution of the environment. / Inibidores de nitrificação podem reduzir o potencial de contaminação ambiental de dejetos de animais, relativamente à lixiviação de nitrato (NO3 -) e à emissão de óxido nitroso (N2O). Todavia, essa estratégia não tem sido suficientemente avaliada pela pesquisa, especialmente com a cama de aviário (CA). Por isso, o objetivo do presente trabalho foi o de avaliar o efeito do produto Agrotain Plus (AP), o qual contém 81% de dicianodiamida (DCD), sobre a inibição da nitrificação, a volatilização de amônia (NH3) e a mineralização do carbono (C) e do nitrogênio (N) da CA. Foram conduzidos dois experimentos em laboratório, em solo da camada 0-10 cm de um Argissolo Vermelho Distrófico arênico. Num experimento, conduzido durante 54 dias, os tratamentos constaram da incorporação ao solo de CA (4,7 Mg ha-1, massa seca), sem AP e juntamente com as doses de 3,5, 7,0 e 14 kg ha-1 de AP, além de um tratamento sem CA e sem AP (testemunha). No outro experimento, conduzido durante 69 dias, além desses tratamentos havia dois com adição da CA na superfície do solo, com e sem adição de AP (7 kg ha-1). O AP, contendo DCD como inibidor da nitrificação, retardou o aparecimento de NO3 - no solo, sendo que esse efeito inibitório da nitrificação foi mais intenso na maior dose de AP (14 kg ha-1). A volatilização de NH3 ocorreu apenas quando a CA permaneceu na superfície do solo e foi favorecida pela adição de AP. A adição do AP aumentou a mineralização do C e do N da CA em 4 e 28%, respectivamente. Os resultados deste trabalho indicam que a dicianodiamida (DCD), contida no produto Agrotain Plus, reduz a taxa de nitrificação do N amoniacal da cama de aviário no solo e poderá constituir uma estratégia para preservar o N deste material orgânico, além de reduzir o seu potencial poluidor do ambiente.
16

Composto bokashi com inóculo nativo e comercial, farinha de penas e a disponibilidade de nitrogênio e fósforo / Bokashi fermented compost with native and commercial inoculum, poultry feather manure and the nitrogen and phosphorus availability

Pinto, Diego Fontebasso Pelizari 26 March 2018 (has links)
Poucos estudos existem sobre o efeito de diferentes inóculos microbianos na produção de composto fermentado bokashi e seu efeito no solo em relação à disponibilidade de nitrogênio e fósforo. A farinha de penas é outro potencial adubo orgânico que é pouco explorado no Brasil. O presente estudo teve por objetivo avaliar o efeito dos inóculos microbianos comercial e nativo, assim como da farinha de penas, na disponibilização de nitrogênio e fósforo, e sua interferência na nitrificação no solo. Os compostos bokashi foram feitos um com inóculo coletado em solo de área de preservação permanente misturado a solo de área de cultivo e outro com inóculo comercial. Os tratamentos: bokashi com inóculo comercial (BC), bokashi com inóculo nativo (BN), mistura de farelos com inóculo comercial (FC), mistura de farelos com inóculo nativo (FN), somente mistura de farelos (F), somente aplicação do inóculo comercial no solo (TC), farinha de penas (FP) e somente solo (T) foram misturados ao solo e incubados por 84 dias. Avaliações periódicas foram feitas dentro do período de incubação, as quais mensuraram a mineralização de nitrogênio, a nitrificação, a disponibilização de fósforo, a respiração basal, o carbono da biomassa microbiana, o coeficiente metabólico, o pH e o carbono e o nitrogênio total. O nitrogênio e o fósforo disponível foram avaliados nos compostos. O bokashi foi eficiente na disponibilização de fósforo no solo, assim como nitrogênio e fósforo no composto. A mineralização de nitrogênio foi reduzida quando os farelos passaram pelo processo de bokashi. A aplicação do bokashi não interferiu na nitrificação. O BC foi mais eficiente em disponibilizar fósforo e nitrogênio no composto e no solo que o BN. O FC apresentou uma atividade biológica de decomposição mais intensa, assim como maior mineralização de nitrogênio dos compostos quando comparado ao FN. O FN aumentou o nitrogênio orgânico no solo. Ambos inóculos demonstraram pouco efeito na nitrificação e na acidez do solo. A aplicação do FP no solo apresentou grande potencial para o suprimento de nitrogênio. / There is a reduced amount of studies on the different microbial inoculum effects in bokashi fermented compost and its effects related to soil nitrogen and phosphorus availability. The poultry feather manure is another potential fertilizer with little exploration in Brazil. The present study aim to evaluate the microbial inoculum effects, commercial and native, and the poultry feather manure, in soil nitrogen and phosphorus availability and nitrification interference. The bokashi composts were made one with collected inoculum in permanent preservation area mixed with crop soil and another with commercial inoculum. The treatments: commercial inoculum bokashi (BC), native inoculum bokashi (BN), commercial inoculum bran mixture (FC), native inoculum bran mixture (FN), bran mixture (F), just commercial inoculum in soil (TC), poultry feather manure (FP) and just soil (T) were mixed with a soil and incubated for 84 days. Periodic evaluations were made in incubation period, that one has assessed the nitrogen mineralization, the nitrification, the phosphorus availability, the basal respiration, the microbial biomass carbon, the metabolic coefficient, the pH and the total carbon and nitrogen. The nitrogen and phosphorus availability was evaluated in composts. The bokashi was efficient in soil phosphorus availability, like nitrogen and phosphorus in compost. The nitrogen mineralization was reduced with bokashi application. The bokashi application did not interfered in nitrification. The BC was more efficient in phosphorus and nitrogen availability in compost and in soil then the native inoculum bokashi. The FC show more biological decomposition activity, therefore with more nitrogen mineralization in relationship with FN. The FN increased the soil organic nitrogen. Both inoculum revealed little effect in nitrification and soil acidity. The FP application in soil demonstrated great potential in nitrogen supply.
17

Estudo geocronológico e evolução metalogenética da mineralização aurífera do depósito Engenho D´Água, quadrilátero ferrífero (Minas Gerais, Brasil) / not available

Beleque, Andreia Raquel Coelho 30 October 2015 (has links)
O depósito de ouro Engenho d\'Água situa-se na porção NW do lineamento Paciência, uma estrutura regional relacionada com o greenstone belt Rio das Velhas da região do Quadrilátero Ferrífero (QF), localizada a sul do craton São Francisco, Minas Gerais (Brazil). O depósito foi inicialmente explorado sob a forma de mina a céu aberto pela AngloGold Ashanti e mais recentemente como lavra subterrânea, pela Mundo Mineração Ltda. No final de 2011 a exploração foi encerrada. A mineralização encontra-se hospedada em rochas Arqueanas do greenstone belt Rio das Velhas, rochas vulcanoclásticas e filitos carbonosos recristalizados sob condições de fácies xisto verde que exibem alteração a quartzo, carbonato e sericita, além de sulfetos e sulfossais de antimônio. De acordo com as evidências petrográficas e de química mineral, o processo mineralizador no depósito Engenho d\'Água pode ser interpretado como uma sucessão de três ciclos evolutivos: um ciclo evolutivo precoce, um ciclo evolutivo principal (sin-mineralização) dividido em dois estágios mineralizadores e um ciclo evolutivo tardio (tardi-mineralização). O ciclo evolutivo pré-mineralização, anterior a D1, nas rochas vulcanoclásticas, caracteriza-se pela associação quartzo + albita + sericita + clorita + calcita ± pirrotita ± Au e, nos filitos carbonosos por quartzo + sericita + dolomita + pirita ± calcopirita ± tetraedrita ± Au. A composição das sericitas e clorita usada como geotermômetro revela temperaturas de formação em torno de 450-475ºC e 490 ± 10ºC, respectivamente. O ciclo evolutivo principal caracteriza-se pelo desenvolvimento das estruturas mineralizadas sujeitas a dobramento isoclinal D1/D2. O primeiro estágio evolutivo caracteriza-se pelo desenvolvimento de quartzo + albita + sericita + clorita + dolomita, abundantes sulfetos (pirita, arsenopirita, pirrotita), sulfossais de antimônio, electrum e ouroestibinita. Consiste no principal estágio de deposição do ouro e com base no geotermômetro da arsenopirita (em equilíbrio com pirita, pirrotita e ouro) estima-se uma temperatura de formação de 360-370ºC. Para o desenvolvimento dos sulfossais de antimônio estima-se uma temperatura em torno de 250-300ºC. O segundo estágio evolutivo é semelhante ao primeiro com a característica particular de apresentar elevada concentração de sulfossais de antimônio e escasso ouro. O ciclo evolutivo tardi-mineralização é caracterizado pela deposição tardia de vênulas de quartzo + pirita + carbonato + Au, devendo estar associado à circulação tardia de fluido hidrotermal por fraturação tardi-orogênica. Estudos de geoquímica de rocha total revelam protólitos, para as rochas vulcanoclásticas, de natureza félsica, composição dacítica e magmas com afinidade geoquímica calci-alcalina. Dados isotópicos de Pb em pirita e bertierita (associadas aos estágios sin-mineralização) forneceram idades modelo de 2.6 Ga como a época de desenvolvimento do principal evento mineralizador. Datação Ar-Ar em sericita hidrotermal sugere a atuação de eventos tectono-metamórficos mais jovens durante o Neoproterozóico (Brasiliano) em torno de 631 ± 6 Ma. A assinatura isotópica em Pb, Sr e Nd nos minerais e nas rochas hospedeiras (vulcanoclásticas e filito carbonoso) indicam fluidos mineralizadores derivados de diferentes reservatórios, predominantemente da crosta continental superior. Isótopos estáveis de enxofre também indicam a ocorrência de fluidos com origem na crosta. / The Engenho d\'Água Gold deposit occurs along the NW portion of the Paciência lineament, a regional-scale structure related to the Rio das Velhas greenstone belt of the Quadrilátero Ferrífero (QF) region, located in the Southern tip of the São Francisco craton, Minas Gerais (Brazil). The deposit was formely exploited as open-pit mine by AngloGold Ashanti and more recently underground by Mundo Mineração Ltda. Mining was discontinued by the end of 2011.The mineralization is hosted in Archean rocks of Rio das Velhas greenstone belt, represented by vulcaniclastic rocks and carbonaceous phyllites recrystallized under greenschists facies conditions that exhibit alteration to quartz, carbonate and sericite, besides sulphides and antimony sulfosalts. According to petrographic and mineral chemistry evidences, the ore-forming process at Engenho d\'Água deposit may be interpreted as a succession of three main evolution cycles: a early ore stage, a main ore stage, subdivided into two mineralized stages, and a late ore stage. The early ore stage, before D1, comprises a mineral assemblage of quartz + albite + sericite + chlorite + calcite ± pyrrothite ± Au (in vulcaniclastic rocks) and quartz + sericite + dolomite + pyrite ± calcopyrite ± tetrahedrite ± Au (in carbonaceous phyllite). Sericite and chlorite compositions used as geothermometer suggest a temperature of formation from 450-475ºC e 490 ± 10ºC, respectively. The main ore stage comprises the development of mineralized folded structures (D1/D2). The first stage is characterized by the development of quartz + albite + sericite + chlorite + dolomite and significant amount of sulphides (pyrite, arsenopyrite, pyrrothite), antimony sulfosalts, electrum and aurostibite. Consist in the principal ore stage. According to arsenopyrite geothermometer (in equilibrium with pyrite, pyrrothite and gold) the temperature of formation range from 360-370ºC. The formation of antimony sulfosalts range ca. 250-300ºC. The second ore stage is characterized by abundante development of antimony sulfosalts and scarce gold. The late ore stage is similar to the first ore stage with quartz + pyrite + carbonate + Au veinlets. Whole rock geochemical data for vulcaniclastic rocks indicate felsic nature for protholiths, dacitic composition and calco-alcaline affinity for magmas. Pb isotopic data on pyrite and berthierite (main ore stage) show model age of 2.6 Ga for the principal mineralization stage. Ar-Ar data suggest tectono-metamorphic events during Neoproterozoic (Braziliano) ca. 631 ± 6 Ma. The isotopic signatures of Pb, Sr and Nd of the ore and whole rock (vulcaniclastic rocks and carbonaceous phyllite) indicate mineralization fluids from different reservoirs, principally source rocks from superior continental crust. Sulfur stable isotopes also indicate the same source.
18

Caracterização das rochas hospedeiras e da mineralização sulfetada do Alvo Estrela (Cu-Au), Serra dos Carajás, Pará

Fleck, André January 2005 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-07-03T14:59:05Z No. of bitstreams: 1 37.pdf: 63816884 bytes, checksum: 4b2d75ac79e16792a520e313bf41b73e (MD5) / Made available in DSpace on 2015-07-03T14:59:05Z (GMT). No. of bitstreams: 1 37.pdf: 63816884 bytes, checksum: 4b2d75ac79e16792a520e313bf41b73e (MD5) Previous issue date: 2005 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / ADIMB - Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira / André Fleck As rochas hospedeiras do Alvo Estrela (Cu-Au), na região da Serra dos Carajás, são andesitos e gabros calcioalcalinos e cogenéticos pertencentes ao Grupo Grão Pará, do Supergrupo Itacaiúnas, formados há 2,7 Ga. As rochas do alvo correspondem a uma seqüência de 400-600m de espessura de andesitos e gabros alterados compostos de hastingsita, Fepargasita, Fe-hornblenda, oligoclásio-andesina, albita, magnetita, biotitas, dravita e schorlita, com menores quantidades de chamosita. Texturas ígneas reliquiares ofítica e subofítica ainda estão preservadas nas rochas. A origem do gabro e do andesito está relacionada a arcos magmáticos, como sugere a razão Sc/Ti do gabro 0,02-2,28 x 10 -3 e 3,25 x 10 -3 - 1,67 x 10 -3 do andesito. A contaminação crustal também é indicada pelo valor negativo do Nd (T)= -3,2. O andesito apresenta maiores conteúdos de ETR (ΣREE = 347 a 1786,12 ppm) do que o gabro (ΣREE = 227,38 a 1028,28 ppm), o quê pode refletir o conteúdo ígneo original ou um estágio avançado de alteração. Esta última hipótese é favorecida pela similaridade entre os padrões das rochas máficas do Alvo Estrela e basaltos e andesitos paleoproterozóicos de Birch Uchi e La Ronge Domain normalizados pelo MORB. As rochas hospedeiras do Alvo Estrela Cu-Au foram afetadas por uma alteração sódico-cálcica inicial seguida por uma alteração potássica, acompanhada de ferrificação e sulfetação, que transformou os protólitos ígneos em rochas ricas em biotita. A alteração sódico-cálcica inicial é representada por hastingsita, Fe-pargasita, Fe-hornblenda, oligoclásioandesina, albita, quartzo, magnetita e menores quantidades de Fe e Mg-biotitas, Fe-epidoto e clorita. A alteração potássica se sobrepõe à alteração sódico-cálcica, sendo composta de siderofilita, biotitas, Fe-epidoto, fluorita, minerais radioativos, quartzo, chamosita, dravita, schorlita, magnetita, calcopirita, pirita, pirrotita, molibdenita e menores quantidades de bornita. O estágio de alteração tardio é representado por greisenização desenvolvida em zonas específicas, principalmente no andesito. A assembléia do greisen é constituída de quartzo, zinnwaldita, Li-muscovita, dravita-schorlita, fluorita, topázio, titanita, F-apatita e clorita. O último estágio de alteração pós-data tanto a mineralização como a greisenização. É marcado por carbonatos junto a fases de baixa temperatura, como calcita, fluorita, chamosita, topázio, quartzo e turmalina. Esta seqüência de alteração sugere que fluidos quentes responsáveis pela alteração potássica e albitização eram oxidados e alcalinos, apresentando altas atividades de K e Cl adicionadas a alta razão Na/Ca. Durante o resfriamento é provável que tenha havido uma diminuição na razão Na/Ca, acompanhada de um aumento na atividade de F, como evidenciado pela maciça presença de fluorita. Raros epidoto e calcita indicam aumento na ix atividade de Ca durante o final do hidrotermalismo. Durante o estágio de greisenização o fluido se tornou reduzido e ácido, permitindo a estabilização de Li-muscovitas e demais fases presentes no greisen. A mineralização sulfetada é epigenética e concentra-se principalmente em veios, brechas e stockworks presentes principalmente no andesito. Os veios e brechas formados em 1,8 Ga são compostos de calcopirita, pirita, bornita (subordinada) molibdenita, além de magnetita, acompanhados da ganga presente nos veios, composta de quartzo, fluorita, albita, siderofilita, turmalinas, epidoto, chamosita, topázio e rara calcita. A alteração hidrotermal, responsável pela mineralização, caracteriza-se inicialmente por um processo de silicificação (pré-mineralização), identificada pela presença de fases como quartzo, albita e magnetita, seguido por um estágio de potassificação, ferrificação e sulfetação, caracterizado pela presença de fases como siderofilita, turmalinas, albita, quartzo, epidoto, fluorita, magnetita, ilmenita, chamosita, calcopirita, pirita, pirrotita, molibdenita com bornita subordinada. A calcopirita substitui a pirita e é,por sua vez substituída por pirrotita. O Au (0,116-0,759%) foi encontrado principalmente na calcopirita. O estágio subseqüente de alteração dos veios (tardi a pós-mineralização) compreende um processo de greisenização incipiente, onde predominam fases cristalinas como quartzo, zinnwaldita, Li-muscovita, turmalinas, fluorita, topázio e clorita. Veios de fluorita, calcita, chamosita, topázio e quartzo pós-datam a mineralização e a greisenização. Temperaturas do geotermômetro da clorita indicam uma média de 235°C para o estágio de greisenização. Esta seqüência de alteração sugere que fluidos quentes, responsáveis pela alteração potássica e albitização eram oxidados, alcalinos e apresentavam uma alta atividade de K e Cl em adição à alta razão Na/Ca. O padrão de preenchimento dos veios também sugere que a fO2 dos fluidos iniciais era compatível com o tampão quartzo-magnetita. Os fluidos, que dominavam os veios com alteração potássica, eram oxidados e provavelmente fracamente alcalinos, tornando-se reduzidos e ácidos, durante o estágio de greisenização. O decréscimo do pH aumentaria a solubilidade da calcopirita, o que pode explicar a menor presença deste sulfeto no greisen. Dados de análises de isótopos de oxigênio realizadas em cristais de quartzo ( 18O = 9,6-10,2‰), clorita ( 18O = 1,2‰ e D-47‰)e biotita ( 18O = 3,7‰ e D-7,8‰) de veios (Z.G. Lindenmayer, com. verbal) sugerem que os fluidos responsáveis pela mineralização possuiam assinaturas metamórficas e que a mistura destes com águas meteóricas tiveram um importante papel no resfriamento do sistema hidrotermal. Esta mistura pode ter reduzido a concentração de cloreto do fluido, diminuindo a solubilidade da calcopirita. / The host rocks for the Estrela Cu-Au deposit in the Serra dos Carajás region are calc alkaline and cogenetic andesites and gabbros of the Grão Pará Group, of the Itacaiunas Supergroup, formed by 2.7 Ga. The deposit is in a 400-600 m thick sequence of altered andesites and gabbros, composed by hastingsite, Fe-pargasite, Fe-hornblende, oligoclaseandesine, albite, quartz, magnetite and biotite, with minor chamosite, dravite and schorlite. Relict ophitic to subophitic igneous textures are still preserved in these rocks. The gabbros and andesites are from magmatic arc origin, as suggested by Sc/Ti ratios of 0.02-2.28 x 10 -3 for the gabbros and 3.25 x 10 -3 - 1.67 x 10 -3 for the andesites. Crustal contamination is also indicated by the Nd (T) negative values of –3.2. The andesites present higher REE content (ΣREE = 347 a 1786.12 ppm) than the gabbros (ΣREE = 227.38 a 1028.28 ppm), which may reflect the original igneous content or an advanced alteration stage. The second possibility is favored by the similarity of the MORB normalized spidergrams of the Estrela mafic rocks and the Archean and Paleoproterozoic Canadian Basalts from Birch Uchi and La Ronge Domain. The host rocks of the Estrela Cu-Au Deposit have been affected by an early calcicsodic alteration followed by a potassic alteration, accompanied by ferrification and sulfidation, which transformed the igneous protoliths into biotite-rich rocks. The early calcicsodic alteration is represented by hastingsite, Fe-pargasite, Fe-hornblende, oligoclaseandesine, albite, quartz, magnetite and minor Fe-biotite, Fe-epidote and chlorite. The potassic alteration overprinted the calcic-sodic mineral assemblage and is caracterized by siderophyllite, biotite, Fe-epidote, fluorite, radioactive minerals, quartz, chamosite, dravite, schorlite, magnetite, chalcopyrite, pyrite, pyrrhotite, molybdenite and minor bornite. The late alteration stage is represented by a greisenization at localized sites, mainly in the andesites. The greisen mineralogy is quartz, zinnwaldite, Li-muscovite, dravite-schorlite, fluorite, topaz, titanite, F-apatite and chlorite. The last alteration stage post dates the mineralization and greisenization. It is marked by calcite, fluorite, chamosite, topaz, quartz and tourmaline. The ore is epigenetic, occurring in vein breccias, stockworks, and also disseminated in the host rocks, mostly in the andesites. The vein and breccia ore formed at about 1.8 Ga and consist of chalcopyrite, pyrite, minor bornite, molybdenite and magnetite along with quartz, fluorite, albite, siderophyillite, tourmaline, epidote, chamosite, topaz and occasionally calcite. Except for the calcic-sodic alteration, the same mineralogy is observed in the vein fillings and host rocks. The older veins, pre dating the ore, are composed by quartz, albite and magnetite, characterizing a silicification process, which is followed by a potassic alteration, accompanied xi by ferrification and sulfidation. The next stage of veins contains siderophyllite, biotite, Feepidote, fluorite, radioactive minerals, quartz, chamosite, dravite, shorlite, magnetite, chalcopyrite, pyrite, pyrrhotite, molybdenite and minor bornite. Chalcopyrite replaces pyrite and is replaced by pyrrhotite. Gold (0.116-0.759%) was found manly in chalcopyrite. The late alteration veins present quartz, zinnwaldite, Li-muscovite, dravite-shorlite, fluorite, topaz, titanite, F-apatite and chlorite. Calcite, fluorite, chamosite, topaz, quartz and tourmaline veins post date the mineralization and greisenization. Chorite geothermometry temperature indicate an average of 235°C for late stage veins. This alteration sequence suggests that hotter fluids, responsible by the potassic alteration and albitization were oxidizing, alkaline and held high K and Cl activities in addition to high Na:Ca ratios. During the cooling path a decreasing in the Na:Ca ratio probably occurred accompanied by a sharp increasing of F activity, as evidenced by the massive presence of fluorite. Rare epidote and calcite attest to the slightly growing Ca activity towards the latest hydrothermal phase. During the greisenization stage the fluids became reducing and acidic permitting the stabilization of the Li-muscovites and the other greisen mineral assemblages. The vein filling pattern also suggests that the fO2 of the early fluids was buffered by Quartz-Magnetite. The fluids dominating the potassic veins were still oxidizing and probably slightly alkalic, turning into reducing and acidic during the greisenization stage. The pH decrease would increase the chalcopyrite solubility, which may explain its scarcity associated to the greisen. 18OSMOW on vein quartz ( 18O = 9.6-10.2‰), chlorite ( 18O = 1.2‰ e D-47‰) and biotite ( 18O = 3.7‰ e D-7.8‰) indicate that the mineralizing fluids were metamorphic in origin and that the mixture of meteoric water played an important role on the cooling hydrothermal system. This mixture may have reduced the chloride concentration in the fluid, decreasing the chalcopyrite solubility.
19

Geologia, Geoquímica e Mineralogia do Complexo Carbonatítico Morro Preto – GO

Nascimento, Estela Leal Chagas do 14 August 2018 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Geociências, Pós-Graduação em Geociências Aplicadas, 2018. / A Província Alcalina de Goiás (GAP) é uma das maiores províncias kamafugíticas no mundo. A porção sul da GAP é composta em sua maioria por depósitos piroclásticos e lavas utrapotássicas, ocorrendo carbonatitos localmente, e a porção central consiste principalmente de diatremas kamafugíticos. A porção norte da GAP possui predominantemente complexos intrusivos alcalinos ultramáficos a máfico-intermediários, com mineralização de níquel laterítico associada. O Complexo alcalino carbonatítico Morro Preto, localizado na porção norte da GAP, é uma exceção na região, devido à associação carbonatito-kamafugito e devido à mineralização de fosfato associada. O complexo se caracteriza por duas intrusões subcirculares (Morro Preto Norte e Morro Preto Sul) de magnetita apatita magnesiocarbonatitos evoluindo para ankerita ferrocarbonatitos ricos em bário, e ferrocabonatitos tardios contendo siderita. A série carbonatítica fenitiza as rochas hospedeiras do Pré-cambriano, atingindo um halo metassomático de aproximadamente 800m em superfície. A mineralização de fosfato hospeda-se nas rochas magnetita apatita magnesiocarbonatitos. Essas rochas variam em textura e composição modal: se apresentando desde cumulados ricos em apatita e magnetita, a até rochas com textura de fluxo magmático e com proporções menores de magnetita e apatita. A apatita é rara a ausente nos ferrocarbonatitos, sendo Fe-dolomita e ankerita os principais carbonatos. Siderita pode estar presente nas feições mais tardias, além de traço de monazita e carbonatos da série Magnesitasiderita. Dados geológicos, geoquímicos e de química mineral são consistentes com a evolução dos magnesiocarbonatitos para ferrocarbonatitos, evidenciando processos de evolução por cristalização fracionada, imiscibilidade de líquidos, metassomatismo e eventos hidrotermais tardios. As rochas silicáticas do complexo são diques de kamafugito e raras ocorrências de diques alcalinos félsicos e basalto alcalino, sendo que esse último litotipo não apresenta uma relação clara com a série carbonatítica do complexo. Os diques alcalinos de composição félsica possuem microcristais de K-feldspato em uma matriz afanítica, dominado por carbonato e argilominerais. Apesar de feições magmáticas reliquiares, essas rochas estão intensamente fenitizadas, e parte da fábrica mineral encontrada pode ser um produto de metassomatismo potássico. Os kamafugitos representam as rochas mais primitivas do Complexo Morro Preto. Abrangem um intervalo composicional típico dos mafuritos descritos na GAP, indicando a natureza relativamente diferenciada desses diques em comparação com katungitos e com os picritos alcalinos que representam o magma parental da maioria dos complexos alcalinos ultramáficos do norte da GAP. Os kamafugitos de Morro Preto contêm glóbulos de carbonato, corroborando a hipótese de imiscibilidade entre líquido silicático e carbonatítico durante a formação do complexo, e indicando que representam o magma parental tanto das rochas silicáticas mais diferenciadas quanto das rochas da série carbonatítica. O clinopiroxênio dos kamafugitos do Complexo Morro Preto tem composição química comparável à do piroxênio de bebedouritos de complexos alcalinos (e.g. Salitre) da Província do Alto Paranaíba (APIP) e do piroxênio em xenólitos de bebedourito em kamafugitos, tanto em Morro Preto quanto na Mata da Corda, na Província do Alto Paranaíba (APIP). Esta similaridade fornece evidências adicionais da associação kamafugito-carbonatito na GAP, e reforça as semelhanças petrogenéticas entre as duas províncias alcalinas. Considerando que a APIP hospeda um número considerável de complexos intrusivos, alcalinos carbonatíticos, contendo mineralização de P-Nb-REE(-Ti-Ba-Fe-U), recomenda-se trabalhos exploratórios na GAP com o foco na identificação de complexos alcalinos carbonatíticos não aflorantes, utilizando a afinidade metalogenética do Complexo Morro Preto e a mineralização de fosfato associada como um guia exploratório. / The Late-Cretaceous Goiás Alkaline Province (GAP) is one of the largest kamafugite provinces in the world. It is dominated in its southern portion by ultrapotassic lavas and pyroclastic deposits, locally containing carbonatites, and in the central portion by kamafugitic diatremes. The northern portion of GAP consists of ultramafic to mafic/intermediate, plagioclase-bearing alkaline rocks and host mostly Ni laterite mineralization. The Morro Preto Alkaline-Carbonatite Complex in northern GAP is an exception, in that it is characterized by an intrusive carbonatite-kamafugite association and contains significant phosphate mineralization. It comprises two circular intrusions (Morro Preto North and Morro Preto South) of magnetite apatite magnesiocarbonatites, which host phosphate mineralization, and gradually differentiate to barium-rich ferrocarbonatites, some containing carbonates of the magnesite-siderite series. Both carbonatite intrusions fenitized the Precambrian host rocks, the metasomatic halo reaching up to 800m. The phosphate-mineralized magnetite apatite magnesiocarbonatites vary in texture and modal composition from magnetiteapatite cumulates (pseudophoscorites) to magnesiocarbonatites with only small amounts of magnetite and apatite. In the Ba-rich ferrocarbonatites, apatite is rare or absent, and the dominant carbonate varies from Fe-dolomite to ankerite and siderite. Carbonates of the magnesite-siderite series and traces of monazite and REE-carbonates are also present in the most evolved rocks. Geological, geochemical and mineral chemistry data are consistent with the evolution of the Morro Preto Complex from the magnesiocarbonatites to ferrocarbonatites by crystal fractionation, liquid immiscibility, metasomatic overprinting and late hydrothermal events. The silicate rocks in the complex are kamafugite dykes, felsic dykes and rare alkaline basalts. Due to their minor expression in the complex, the relation of alkaline basalts to the carbonatites remains unclear. The felsic dykes have K-feldspar microphenocrysts in an aphanitic groundmass dominated by carbonate and secondary clay minerals. Despite the remnants of magmatic textures, these rocks are strongly fenitized and might be the product of the potassic fenitization overprinting the complex. Kamafugites represent the most primitive rock type in the Morro Preto complex. They have a compositional range similar to the GAP mafurites, indicating their relatively evolved position in the kamafugitic series, and distinguishing them from the regional MgO-rich alkaline picrites that are the parental magmas to most northern GAP alkaline complexes. Carbonate globules in the Morro Preto kamafugites are consistent with silicate-carbonate liquid immiscibility, suggesting that the kamafugites are the parental magmas both to the more evolved silicate rocks and to the Morro Preto carbonatite series. The chemical composition of clinopyroxene in the Morro Preto kamafugites is comparable with (i) bebedourite xenoliths from the Morro Preto kamafugites, (ii) bebedourite xenoliths from the Alto Paranaíba Province (APIP) kamafugites (Mata da Corda), and (iii) bebedourites occurring in alkaline-carbonatite complexes (Salitre) from the APIP. This provides an additional evidence for the carbonatite-kamafugite association in the GAP, and an indicative of petrogenetic similarities between both alkaline provinces. Considering that the APIP contains a number of carbonatite-bearing plutonic complexes hosting large P-Nb-REE(-Ti-Ba- Fe-U) deposits, additional exploration work directed toward the identification of yet undiscovered carbonatite complexes in the GAP should take into account the characteristics of the Morro Preto phosphate mineralization and, consequently, abroader metallogenetic affinity.
20

Estudo geocronológico e evolução metalogenética da mineralização aurífera do depósito Engenho D´Água, quadrilátero ferrífero (Minas Gerais, Brasil) / not available

Andreia Raquel Coelho Beleque 30 October 2015 (has links)
O depósito de ouro Engenho d\'Água situa-se na porção NW do lineamento Paciência, uma estrutura regional relacionada com o greenstone belt Rio das Velhas da região do Quadrilátero Ferrífero (QF), localizada a sul do craton São Francisco, Minas Gerais (Brazil). O depósito foi inicialmente explorado sob a forma de mina a céu aberto pela AngloGold Ashanti e mais recentemente como lavra subterrânea, pela Mundo Mineração Ltda. No final de 2011 a exploração foi encerrada. A mineralização encontra-se hospedada em rochas Arqueanas do greenstone belt Rio das Velhas, rochas vulcanoclásticas e filitos carbonosos recristalizados sob condições de fácies xisto verde que exibem alteração a quartzo, carbonato e sericita, além de sulfetos e sulfossais de antimônio. De acordo com as evidências petrográficas e de química mineral, o processo mineralizador no depósito Engenho d\'Água pode ser interpretado como uma sucessão de três ciclos evolutivos: um ciclo evolutivo precoce, um ciclo evolutivo principal (sin-mineralização) dividido em dois estágios mineralizadores e um ciclo evolutivo tardio (tardi-mineralização). O ciclo evolutivo pré-mineralização, anterior a D1, nas rochas vulcanoclásticas, caracteriza-se pela associação quartzo + albita + sericita + clorita + calcita ± pirrotita ± Au e, nos filitos carbonosos por quartzo + sericita + dolomita + pirita ± calcopirita ± tetraedrita ± Au. A composição das sericitas e clorita usada como geotermômetro revela temperaturas de formação em torno de 450-475ºC e 490 ± 10ºC, respectivamente. O ciclo evolutivo principal caracteriza-se pelo desenvolvimento das estruturas mineralizadas sujeitas a dobramento isoclinal D1/D2. O primeiro estágio evolutivo caracteriza-se pelo desenvolvimento de quartzo + albita + sericita + clorita + dolomita, abundantes sulfetos (pirita, arsenopirita, pirrotita), sulfossais de antimônio, electrum e ouroestibinita. Consiste no principal estágio de deposição do ouro e com base no geotermômetro da arsenopirita (em equilíbrio com pirita, pirrotita e ouro) estima-se uma temperatura de formação de 360-370ºC. Para o desenvolvimento dos sulfossais de antimônio estima-se uma temperatura em torno de 250-300ºC. O segundo estágio evolutivo é semelhante ao primeiro com a característica particular de apresentar elevada concentração de sulfossais de antimônio e escasso ouro. O ciclo evolutivo tardi-mineralização é caracterizado pela deposição tardia de vênulas de quartzo + pirita + carbonato + Au, devendo estar associado à circulação tardia de fluido hidrotermal por fraturação tardi-orogênica. Estudos de geoquímica de rocha total revelam protólitos, para as rochas vulcanoclásticas, de natureza félsica, composição dacítica e magmas com afinidade geoquímica calci-alcalina. Dados isotópicos de Pb em pirita e bertierita (associadas aos estágios sin-mineralização) forneceram idades modelo de 2.6 Ga como a época de desenvolvimento do principal evento mineralizador. Datação Ar-Ar em sericita hidrotermal sugere a atuação de eventos tectono-metamórficos mais jovens durante o Neoproterozóico (Brasiliano) em torno de 631 ± 6 Ma. A assinatura isotópica em Pb, Sr e Nd nos minerais e nas rochas hospedeiras (vulcanoclásticas e filito carbonoso) indicam fluidos mineralizadores derivados de diferentes reservatórios, predominantemente da crosta continental superior. Isótopos estáveis de enxofre também indicam a ocorrência de fluidos com origem na crosta. / The Engenho d\'Água Gold deposit occurs along the NW portion of the Paciência lineament, a regional-scale structure related to the Rio das Velhas greenstone belt of the Quadrilátero Ferrífero (QF) region, located in the Southern tip of the São Francisco craton, Minas Gerais (Brazil). The deposit was formely exploited as open-pit mine by AngloGold Ashanti and more recently underground by Mundo Mineração Ltda. Mining was discontinued by the end of 2011.The mineralization is hosted in Archean rocks of Rio das Velhas greenstone belt, represented by vulcaniclastic rocks and carbonaceous phyllites recrystallized under greenschists facies conditions that exhibit alteration to quartz, carbonate and sericite, besides sulphides and antimony sulfosalts. According to petrographic and mineral chemistry evidences, the ore-forming process at Engenho d\'Água deposit may be interpreted as a succession of three main evolution cycles: a early ore stage, a main ore stage, subdivided into two mineralized stages, and a late ore stage. The early ore stage, before D1, comprises a mineral assemblage of quartz + albite + sericite + chlorite + calcite ± pyrrothite ± Au (in vulcaniclastic rocks) and quartz + sericite + dolomite + pyrite ± calcopyrite ± tetrahedrite ± Au (in carbonaceous phyllite). Sericite and chlorite compositions used as geothermometer suggest a temperature of formation from 450-475ºC e 490 ± 10ºC, respectively. The main ore stage comprises the development of mineralized folded structures (D1/D2). The first stage is characterized by the development of quartz + albite + sericite + chlorite + dolomite and significant amount of sulphides (pyrite, arsenopyrite, pyrrothite), antimony sulfosalts, electrum and aurostibite. Consist in the principal ore stage. According to arsenopyrite geothermometer (in equilibrium with pyrite, pyrrothite and gold) the temperature of formation range from 360-370ºC. The formation of antimony sulfosalts range ca. 250-300ºC. The second ore stage is characterized by abundante development of antimony sulfosalts and scarce gold. The late ore stage is similar to the first ore stage with quartz + pyrite + carbonate + Au veinlets. Whole rock geochemical data for vulcaniclastic rocks indicate felsic nature for protholiths, dacitic composition and calco-alcaline affinity for magmas. Pb isotopic data on pyrite and berthierite (main ore stage) show model age of 2.6 Ga for the principal mineralization stage. Ar-Ar data suggest tectono-metamorphic events during Neoproterozoic (Braziliano) ca. 631 ± 6 Ma. The isotopic signatures of Pb, Sr and Nd of the ore and whole rock (vulcaniclastic rocks and carbonaceous phyllite) indicate mineralization fluids from different reservoirs, principally source rocks from superior continental crust. Sulfur stable isotopes also indicate the same source.

Page generated in 0.0283 seconds