• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 746
  • 228
  • 217
  • 96
  • 62
  • 49
  • 35
  • 35
  • 35
  • 35
  • 35
  • 34
  • 20
  • 12
  • 9
  • Tagged with
  • 1828
  • 921
  • 232
  • 214
  • 213
  • 173
  • 167
  • 121
  • 102
  • 94
  • 92
  • 87
  • 86
  • 84
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1021

A system for estimating water content of conifer forests using hyperspectral remote sensing data

Li, Jing Yang January 2006 (has links)
Estimation of foliage water content from remote sensing data is critical to wildfire management and monitoring forest health. Several efforts to estimate vegetation water content have relied on empirical relationships and data-specific calibrations. Therefore, the approaches used by these studies are not applicable to larger scales and different species. This work was undertaken to develop systems for retrieving foliage water content of Douglas-fir stands with closed canopy. The canopy structural parameters were constrained by forest dynamic relationships. Sensitivity analysis was used to quantify the influence of foliage water content and other factors (LAI, canopy closure, soil) on canopy reflectance simulated in the spectral range between 400 and 2400 nm. Lookup tables were generated using a forest radiative transfer model. Fuel moisture content (FMC) of Douglas-fir can then be determined from airborne hyperspectral imagery (AVIRIS) by the lookup table method. We achieved an accuracy of R2 of 0.74 for FMC which was assessed through comparisons of the estimated foliage water content with field measurements. A software system. FMAS (Fuel Moisture Content Mapping System), was developed for the estimation of fuel moisture content of Douglas-fir forests. Conclusions and further research issues were discussed.
1022

Application des analyses par RMN/IRM et gammadensimétrie à la réparationdu béton âgé : étude des transferts hydriques, de l’impact sur l’hydratation du mortierde réparation et sur la durabilité du béton réparé / Application of NMR/MRI and gamma-ray attenuation analysis to the repairof old concrete : investigation of moisture transport, impact on hydrationof repair mortar and durability of repaired concrete

Wang, Biyun 22 September 2015 (has links)
La zone d'enrobage des aciers des structures en béton armé est soumise au cours de la vie de l'ouvrage à l'action de divers agents agressifs (ions chlorure, dioxyde de carbone, etc.) qui sont susceptibles d'entraîner la corrosion des armatures. Dans le cadre de la maintenance de l'ouvrage, une réparation du béton dégradé est généralement imposée afin d'assurer l'intégrité et la sécurité de la structure, et d'en allonger la pérennité. Cette étude s'attache à explorer les transferts hydriques qui limitent l'efficacité de la réparation au cours de l'hydratation du mortier de réparation. L'évolution microstructural et les profils hydriques sont obtenus par des techniques non-destructives comme l'imagerie résonance magnétique (IRM) et la gamma-densimétrie (GD) depuis très jeune âge à 28 jours. La durabilité du béton réparé est concernée. L'effet du séchage est évité dans cette étude. Le mortier isolé d'une même formulation est préparé pour la comparaison du comportement d'hydratation avec le mortier de réparation. Des diverses techniques classiques aident de compléter les résultats obtenus par IRM et GD. Donc le système de réparation est désigné. Les transferts hydriques à l'interface sont visualisés pendant la réparation (0 - 28 jours), afin de permettre une exploration en profondeur sur les mécanismes des couplages physico-chimiques. La réparation plus efficace donc est déterminée par cette méthodologie, en étudiant divers matériaux de réparation, divers états de support (saturé ou séché) et divers conditions environnementaux, etc. De plus, après la réparation (1 - 2 mois), la porosité totale est mesurée par GD ou la porosimétrie par l'intrusion de mercure (PIM). La distribution poreuse est aussi examinée par PIM selon la hauteur du système de réparation. Les indicateurs de durabilité (Cl- et CO2) après la réparation (> 2 mois) présentent l'empêchement de pénétration des ions chlorures et un effet non-évident pour la pénétration du dioxyde de carbone. L'évolution est suivie au fur et à mesure pendant la pénétration, afin d'explorer l'efficacité de la réparation qui s'adresse à une vie de service prolongée. Cette méthodologie pourra être appliquée aussi sur des autres systèmes, où il existe des transferts hydriques. Par exemple, une couche de protection en Béton Fibré à Ultra-haute Performance (BFUHP) sur le béton ordinaire. En conclusion, cette méthodologie en combinant des techniques non-destructifs et destructifs, est un outil d'étudier le système de réparation par un moyen systématique et quantitatif. C'est intéressant de comparer des divers cas. L'efficacité de réparation est étudiée afin d'assurer une durabilité à long terme / The coating area of steel reinforced concrete structures is subjected during service life time to various aggressive agents (carbon dioxide, chloride ions, etc.), which causes corrosion of steel rebars. Concerning the maintenance, repair works of degraded concrete cover are generally imposed to ensure its integrity and structural safety, and to extend long-term durability. This research aims in exploring moisture transfers which limit the efficiency of repair work during mortar hydration. Microstructure evolution and water profiles are obtained by non-destructive techniques such as Magnetic Resonance Imaging (MRI) and Gamma-Ray Attenuation (GRA) since casting until 28 days. The durability of repaired concrete is involved after the repair procedure. The effect of drying is avoided in this research. Sealed mortar of the same formula is prepared to compare its hydration performance with the repair mortar. Various conventional techniques help to supplement the results obtained by MRI and GRA. The configuration of designed repair systems is shown. Moisture transfers at the interface between the repair mortar and the old concrete are investigated during the repair procedure (0 - 28 days), which allows exploring the mechanisms of physico-chemical couplings. Efficient repair work can be determined for various repair materials, various substrates (initially-saturated or initially-dried), various environmental conditions, etc. Furthermore, total porosity is measured by GRA or by Mercury Intrusion Porosimetry (MIP) after the repair procedure (1 - 2 months). Pore size distribution (PSD) is also investigated by MIP at different positions within the repair systems. Durability indicators (Cl- and CO2) after the repair procedure (> 2 months) present a prevention of chloride penetration and a non-evident influence on carbonation. Evolution is followed during penetration, in order to explore repair efficiency during prolonged service life time. This methodology could also be applied on various systems where exist moisture transfers. For example, a protective layer of Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) on conventional concrete. In conclusion, this methodology is a tool to investigate the repair systems in a systematic and quantitative way, by combining non-destructive and destructive techniques. It is interesting to compare aforementioned systems. Repair efficiency is investigated in order to ensure a long-term durability
1023

Cattle manure, scalping and soil wetness effects on some physical properties of a hardsetting soil and associated early maize growth

Nciizah, Adornis Dakarai January 2011 (has links)
Most soils in the Eastern Cape Province, South Africa are shallow and are low in organic matter. Therefore these soils are structurally fragile and highly susceptible to inherent degradative processes like hardsetting. The objective of this study was to determine the effect of cattle manure, scalping and soil wetness on aggregate stability, penetration resistance and early maize growth in hardsetting soils. Glasshouse and field studies were conducted to determine the effect of cattle manure on aggregate stability and penetration resistance of freshly exposed topsoils by scalping at 0, 10 and 20 cm depths. In the glasshouse cattle manure was applied at 0 and 20 Mg/ha and matric suction was kept at ~ 30 and ~ 400 kPa; contrasting high and low soil wetness. Three soils were put in pots and arranged in a randomized complete block 3 2 2 factorial design. The field study was done at the University of Fort Hare research farm and the treatments were arranged in a split-plot complete randomized design with three replications. Scalping treatment was the main plot whilst the quantity of the cattle manure applied was the sub plot. Cattle manure increased mean weight diameter (MWD) by between 48% and 71% under glasshouse and between 18% and 33% under field conditions, depending on the soil wetting rate. Cattle manure reduced MWD when the soil under field condition was subjected to mechanical shaking. Soil penetration resistance decreased linearly, with increasing soil wetness but it rapidly increased with increase in matric suction up to ~200 kPa and thereafter the rate of increase reduced. In the glasshouse, all treatments had no significant effects on shoot dry weight but low matric suction increased root dry weight by 133%. Interaction of cattle manure and low matric suction reduced shoot length by 6%, shoot fresh weight by 25%, root surface area by 36%, root length by 5% and root fresh weight by 29% compared to the control. In contrast, application of cattle manure and high matric suction increased shoot length by 37%, shoot fresh weight by 136%, root surface area by 159%, root length by 94% and root fresh weight by 119%. In the field, cattle manure application increased root length density and shoot dry matter by 26% and 30% respectively. Cattle manure improved the stability of aggregates of the hardsetting soil under rapid or slow water intake conditions experienced during rainfall or irrigation. However, under field conditions cattle manure acted as a deflocculant and decreased the stability of aggregates when mechanical stress was applied. The effectiveness of cattle manure in improving maize growth in hardsetting soils was determined by matric suction.
1024

Analysis Of Unsaturated Flow In Soils : Numerical Modelling And Applications

Hari Prasad, K S 02 1900 (has links) (PDF)
No description available.
1025

Streamflow and Soil Moisture Assimilation in the SWAT model Using the Extended Kalman Filter

Sun, Leqiang January 2016 (has links)
Numerical models often fail to accurately simulate and forecast a hydrological state in operation due to its inherent uncertainties. Data Assimilation (DA) is a promising technology that uses real-time observations to modify a model's parameters and internal variables to make it more representative of the actual state of the system it describes. In this thesis, hydrological DA is first reviewed from the perspective of its objective, scope, applications and the challenges it faces. Special attention is then given to nonlinear Kalman filters such as the Extended Kalman Filter (EKF). Based on a review of the existing studies, it is found that the potential of EKF has not been fully exploited. The Soil and Water Assessment Tool (SWAT) is a semi-distributed rainfall-runoff model that is widely used in agricultural water management and flood forecasting. However, studies of hydrological DA that are based on distributed models are relatively rare because hydrological DA is still in its infancy, with many issues to be resolved, and linear statistical models and lumped rainfall-runoff models are often used for the sake of simplicity. This study aims to fill this gap by assimilating streamflow and surface soil moisture observations into the SWAT model to improve its state simulation and forecasting capability. Unless specifically defined, all ‘forecasts’ in Italic font are based on the assumption of a perfect knowledge of the meteorological forecast. EKF is chosen as the DA method for its solid theoretical basis and parsimonious implementation procedures. Given the large number of parameters and storage variables in SWAT, only the watershed scale variables are included in the state vector, and the Hydrological Response Unit (HRU) scale variables are updated with the a posteriori/a priori ratio of their watershed scale counterparts. The Jacobian matrix is calculated numerically by perturbing the state variables. Two case studies are carried out with real observation data in order to verify the effectiveness of EKF assimilation. The upstream section of the Senegal River (above Bakel station) in western Africa is chosen for the streamflow assimilation, and the USDA ARS Little Washita experimental watershed is chosen to examine surface soil moisture assimilation. In the case of streamflow assimilation, a spinoff study is conducted to compare EKF state-parameter assimilation with a linear autoregressive (AR) output assimilation to improve SWAT’s flood forecasting capability. The influence of precipitation forecast uncertainty on the effectiveness of EKF assimilation is discussed in the context of surface soil moisture assimilation. In streamflow assimilation, EKF was found to be effective mostly in the wet season due to the weak connection between runoff, soil moisture and the curve number (CN2) in dry seasons. Both soil moisture and CN2 were significantly updated in the wet season despite having opposite update patterns. The flood forecast is moderately improved for up to seven days, especially in the flood period by applying the EKF subsequent open loop (EKFsOL) scheme. The forecast is further improved with a newly designed quasi-error update scheme. Comparison between EKF and AR output assimilation in flood forecasting reveals that while both methods can improve forecast accuracy, their performance is influenced by the hydrological regime of the particular year. EKF outperformed the AR model in dry years, while AR outperformed the EKF in wet years. Compared to AR, EKF is more robust and less sensitive to the length of the forecast lead time. A combined EKF-AR method provides satisfying results in both dry and wet years. The assimilation of surface soil moisture is proved effective in improving the full profile soil moisture and streamflow estimate. The setting of state and observation vector has a great impact on the assimilation results. The state vector with streamflow and all-layer soil moisture outperforms other, more complicated state vectors, including those augmented with intermediate variables and model parameters. The joint assimilation of surface soil moisture and streamflow observation provides a much better estimate of soil moisture compared to assimilating the streamflow only. The updated SWAT model is sufficiently robust to issue improved forecasts of soil moisture and streamflow after the assimilation is ‘unplugged’. The error quantification is found to be critical to the performance of EKF assimilation. Nevertheless, the application of an adaptive EKF shows no advantages over using the trial and error method in determining time-invariant model errors. The robustness of EKF assimilation is further verified by explicitly perturbing the precipitation ‘forecast’ in the EKF subsequent forecasts. The open loop model without previous EKF update is more vulnerable to erroneous precipitation estimates. Compared to streamflow forecasting, soil moisture forecasting is found to be more resilient to erroneous precipitation input.
1026

A computer analysis of the flow of water and nutrients in agricultural soils as affected by subsurface drainage

Richard, Paul François January 1988 (has links)
A computer model was developed in order to determine the effects of drainage practices on nutrient losses from level agricultural soils. The model performs a daily simulation of the vertical flow of water, nitrogen, phosphorus, and heat, and of the growth of crops. A water flow submodel calculates the depth of the water table based on daily predictions of evaporation, transpiration, flow to drains and ditches, and deep percolation. An original saturated-unsaturated flow algorithm is used to determine moisture infiltration, redistribution, and upward flow in the soil matrix, as well as bypassing flow in the soil macropores and horizontal flux between the soil matrix and the macropores, and surface runoff. Nutrient movement occurs by mass flow. Heat flow, nutrient biochemical transformations, and crop growth are determined by using well established relations. Field tests were carried out for a period of two years on an experimental site in the Lower Fraser Valley of British Columbia. The water table depth was measured on a continuous basis. Grab samples of drainwater and observation wells were obtained periodically and analyzed for nitrogen (N0₃-N, NH₄-N, and TKN) and phosphorus (P0₄-P and TP). The field results show a decrease in the concentration of all nutrients over the sampling period, and provide evidence that denitrification and bypassing flow are important mechanisms affecting the nutrient balance of this soil. These results were used to calibrate the model. An excellent fit of the observed water table profile and an adequate fit of the observed drain concentration of nitrate were obtained. The simulation revealed that bypassing flow is a very important transfer mechanism in this soil and must be included in order to obtain a satisfactory fit of the experimental data. A sensitivity analysis of the model showed that the patterns of moisture flow have a predominant influence on the rate of nutrient leaching. In particular, it was found that the nutrient concentration in drain water is a strong function of the hydraulic conductivity of the soil matrix and of the horizontal distance between the soil macropores, which control the ratio of moisture flow in the soil matrix to the macropore flow and the lateral diffusion of nutrients between the soil matrix and the macropores. The effects of four different drainage designs on nutrient losses were simulated over a period of two years for three different soils and two different nutrient distributions in the soil. It was found that there is a large difference between the amount of nutrients leached from drainage systems using different drainage coefficients. There was also a large difference in the response of two drainage designs based on the same drainage coefficient but using different depth and spacing of drains. Transient effects, as determined by the initial vertical distribution of the nutrients, were seen to remain dominant over the two year duration of the simulation. The model was found to be useful in explaining the apparent contradictions found in the literature assessing the effects of subsurface drainage on nutrient losses. The results from the model show these effects to be strongly site and condition specific. Furthermore, the model shows that soils and drainage designs that produce similar volumes of drain flow may exhibit very different leaching responses, and that drainage designs equivalent from a hydraulic standpoint can be very dissimilar in their potential for leaching nutrients. The model provides a tool which can be used to determine the appropriateness of different drainage designs in soils where minimizing nutrient losses is critical. / Science, Faculty of / Resources, Environment and Sustainability (IRES), Institute for / Graduate
1027

Sambandet mellan radarsignaler och fukthalt i en lättbetongkonstruktion

Gellerstedt, Jennifer, Westman, Simon January 2017 (has links)
Fukt i byggnader är vanligt och kan leda till skador. Fukten kan ge upphov till mögel och röta, vilket inte är bra för människors hälsa. Fukten kan också påverka olika egenskaper hos byggnadsmaterialen såsom hållfasthet, värmeisoleringsförmåga och ge dimensionsförändringar. Eftersom höga fukthalter kan ha en stor påverkan på materialen är det viktigt att upptäcka och fastställa problemet i ett tidigt skede. Syfte och mål med den här rapporten är att se om det finns ett samband mellan radarsignaler och fukthalt och avgöra om radarteknik är en användbar metod för att mäta fukthalt i ett byggnadselement. I det här arbetet har litteraturstudier, mätningar och analyser gjorts. Materialet som använts är lättbetong som byggts upp till fyra väggar i två olika tjocklekar, två stora och två små väggar. De stora testväggarna användes för radarmätningar och de små som provväggar till den gravimetriska metoden. Väggarna byggdes upp i ett tält där relativa luftfuktigheten (RF) och temperatur kunde styras. I början av experimentet var RF i tältet inställt på 98-99 % och temperaturen på 22 °C som därefter reglerats för att torka ut väggarna. Mätningar har utförts med radar och den gravimetriska metoden parallellt, där den sistnämnda gjorts genom att väga provväggarnas lättbetongblock vid samma tillfällen som radarmätningarna. Provväggarnas lättbetongblock torkades därefter i torkningsugn i 105 °C för att fastställa dess torrdensitet. Insamlade data från radarmätningarna har bearbetats av Radarbolagets personal. Resultaten för de olika metoderna har därefter analyserats och jämförts för att se om det finns ett samband. Resultaten från studien visar att det finns ett samband mellan fukthalt och signalerna från radarmätningarna. Fukthalten kan bestämmas på en lättbetongvägg med en felmarginal på ± 4 kgH20/m3 material, vilket motsvarar cirka 4 %. Det går att få ett bra resultat med radarmätning, metoden är däremot komplicerad men det kan finnas värde för fortsatta studier på flerskiktade konstruktioner för att avgöra om tekniken kan vara användbar för befintliga byggnadskonstruktioner. / Moisture in buildings is common and can lead to damage. The moisture can cause moldand rot, which is not good for human health. The moisture can also affect different properties of the building materials such as strength, thermal insulation and dimensional changes. Because high moisture levels can have a major impact on the materials, it is important to detect and fix the problem at an early stage. The purpose and aim of this report is to see if there is a correlation between radar and moisture content and determine whether radar technology is a useful method of measuring moisture contentin a building element. In this work, literature studies, measurements and analyzes have been made. The material used is lightweight concrete that is built up to four walls in two different thicknesses, two large and two small walls. The large test-walls were used for radar measurements and the small ones as sample-walls for the gravimetric method. The walls were built in a tent where relative humidity (RF) and temperature could be controlled. At the beginning of the experiment, the RF in the tent was set to 98-99 % and the temperature of 22 °C, which was then regulated to dry out the walls. Measurements have been made with radar and the gravimetric method in parallel, where the latter was made by weighing the sample-walls light concrete blocks at the same time as the radar measurements. The blocks of the sample walls were then dried in an oven at 105 °C to determine drydensity. The collected data from the radar measurements have been processed by the Radarbolaget’s personnel. The results for the different methods have then been analyzed and compared to see if there is a relationship. The results from the study show that there is a connection between moisture content and the signals from the radar measurements. The moisture content can be determined on a light concrete wall with a margin of error of ± 4 kgH20/m3material, which corresponds to about 4 %. It is possible to get a good result with radar measurement. However, the method is complicated, but there may be value for further studies on multilayered structures to determine whether the technology can be useful for existing building constructions.
1028

Impact de la température sur la carbonatation des matériaux cimentaires : prise en compte des transferts hydriques / Effect of temperature on the drying and on the atmospheric carbonation of cementitious materials

Drouet, Emeline 18 November 2010 (has links)
La carbonatation est une pathologie du béton armé qui peut engendrer la corrosion des armatures et à terme de la fissuration. Dans le cadre de la gestion des déchets radioactifs, les structures et les conteneurs seraient soumis simultanément à un échauffement (exothermie des déchets), au CO2 atmosphérique, ainsi qu'à un séchage important. Afin de rendre compte de leur évolution à l'échelle séculaire, les données actuelles relatives à la carbonatation à température ambiante doivent être complétées, d'une part par une description de la phénoménologie en température, et d'autre part, par la prise en compte de l'impact des transferts hydriques en température (séchage) sur la carbonatation en insaturé. Le travail présenté se focalise sur l’étude de la durabilité de quatre pâtes de ciment différentes dont deux sont directement dérivées des formulations de référence sélectionnées par l’Andra (CEM I et CEM V) et un mélange baspH. Le premier volet est dédié à l'étude des transferts hydriques reposant sur la conduite d'essais de désorption. Il a notamment permis la caractérisation des isothermes de désorption en température (20, 50et 80°C). L'impact thermique modifie les isothermes : la teneur en eau à l’équilibre chute avec la température et le point d'amorçage de la condensation capillaire est déplacé. Une phase de modélisation a conjointement été conduite en support aux expérimentations. L'utilisation de l'équation de Clausius-Clapeyron a permis de décrire l'effet de la température sur les isothermes (par la détermination de la chaleur isostérique d’adsorption de chacun des matériaux). Bien que l'impact de la température sur la microstructure des pâtes de ciment soit avéré, la prise en compte du déplacement des équilibres thermodynamiques suffit à restituer cet effet thermique sur les isothermes. La détermination des perméabilités intrinsèques par exploitation des cinétiques de désorption (par analyse inverse) a montré la thermoactivation du transport d'eau. La contribution de l'évolution de la microstructure en température ne peut-être négligée sur la perméabilité des matériaux.Le deuxième volet exploratoire, est consacré à l'étude de la carbonatation en température. Il repose sur la mise en place d'un dispositif de carbonatation spécifique (fonctionnement en température) et la conduite d'essais de carbonatation à HR et température contrôlées. La campagne de caractérisation (DRX et ATG)a conduit à l'obtention de profils de carbonatation caractéristiques de chaque couple (HR, Température).Les évolutions minéralogiques (décomposition des hydrates, distribution polymorphique du carbonate de calcium précipité) mises en évidence en température se rapprochent de celles identifiées à température ambiante. En revanche, il ressort que les conditions environnementales influencent significativement les proportions polymorphiques : plus l'HR est faible, plus les teneurs en phases métastables (vatérite,aragonite) sont élevées. Les réactions de dissolution-précipitation mises en jeu dans la transformation polymorphique (des états métastables vers la calcite) sont inhibées à faible HR, par manque de milieu réactionnel. La cinétique de carbonatation, également impactée par les conditions environnementales, est régie par la concurrence de l'effet thermique sur les transferts hydriques et sur la solubilité rétrograde des réactifs. Les profondeurs carbonatées sont maximales aux points d'amorçage de la condensation capillaire propres aux différents matériaux et à chaque température. Les profondeurs carbonatées augmentent avec la température jusqu'à une température limite, caractéristique de la formulation, au-delà de laquelle la solubilité rétrograde des réactifs deviendrait le facteur limitant.Cette phase de compréhension des mécanismes mis en jeu dans la carbonatation en température et de leur niveau de couplage effectuée, les modèles prédictifs de carbonatation en insaturé pourront être étendus à l'application en température. Les résultats de ce travail fournissent les données d'entrées et de validation nécessaires à la validation des simulations numériques. / Carbonation is the major cause of degradation of reinforced concrete structures. It leads to rebar corrosion and cracking of the concrete cover. In the framework of radioactive waste management, cement-based materials used as building material for structures or containers would be simultaneously submitted to heating (due to the waste thermal output), subsequent drying and atmospheric carbon dioxide. Such environmental conditions are expected to modify the carbonation mechanisms (with respect to temperature). In order to describe their long-term evolution of material, a double approach was developed, combining the description of carbonation and drying for temperatures up to 80°C to complement available data at ambient temperature. The present work focuses on the durability study off our hardened cement pastes; two of them are derived from the reference formulations selected by Andra(CEM I and CEM V) and a low-pH mix. The first experimental campaign focuses on moisture transfer. The effect of temperature on drying is investigated through water vapour desorption experiments. The first desorption isotherms of four hardened cement pastes was characterized at 20, 50 and 80°C. The results show a significant influence of the temperature. For a given relative humidity (RH) the water content equilibrium is always reduced temperature is increased and the starting point of capillary condensation is shifted towards higher RHs. The experimental campaign is complemented through modelling activities. The impact of temperature on the first desorption isotherms is effectively described using the Clausius-Clapeyron equation(characterization of the isosteric heat of adsorption). The intrinsic permeability to water is evaluated through inverse analysis by reprocessing the experimental weight loss of initially saturated samples submitted to constant environmental conditions. The intrinsic permeability appears to increase with temperature in relation to the observed microstructure evolution (porosity coarsening).The environmental conditions impact is studied using preconditioned samples (12 different RHs and 20,50 and 80°C) and accelerated carbonation tests. The latter are performed in a new device allowing accurate control of the environmental conditions as well as the carbon dioxide concentration. The carbonated depths and the mineralogical modifications induced by carbonation are assessed using XRDand TGA for each temperature and RH. Most of the mineralogical modifications notified in temperature(hydrates consumption and nature of crystallographic phase of calcium carbonate) are similar with these identified at ambient temperature. Yet the results show a significant influence of the environmental conditions on calcium carbonate polymorphic abundance: the lower the RH, the more abundant the metastable phases (vaterite and aragonite).The rate of the polymorphic transformation (from the metastable states into calcite by dissolution precipitation)is believed to decrease with RH because of lack of liquid water. A significant influence of the environmental conditions on the carbonation rate is also observed. It depends of the competition between the temperature effect on moisture transfer and retrograde solubility of reactants. Carbonation depths appear to be maximal at the RH-starting point of capillary condensation of each material and temperature. Carbonation depths increase with temperature until a limit of temperature characteristic of the material. Above this temperature, reactants solubility might control the main process.
1029

A study of (time)1/4 rehydroxylation kinetics in fired kaolinite

Mesbah, Hesham Elsayed Mohamed January 2011 (has links)
Accurate prediction of long-term moisture expansion in fired clay ceramics requires finding a relationship between the reactivity of a ceramic material with moisture and time. Recently a (time)1/4 law has been proposed which provides a precise relationship between moisture expansion and mass gain in fired clay ceramics and time. However, mass gain studies rather than expansive strain studies provide a more accurate and fundamental measure of the reactivity of fired clay ceramics with moisture. The possibility of using the (time)1/4 law to describe rate of mass gain and consequently to predict moisture expansion in fired clay ceramics with time requires study of the effect of chemical composition and firing temperature on the linear dependence of mass gain on (time)1/4. Pure kaolinite as well as kaolinite mixed with controlled additions of alkali and alkaline-earth metals were employed in this study. These materials were fired at temperatures between 800°C and 1200°C. Mass gain due to the chemical combination of the fired materials with moisture was measured using a recording microbalance under tightly controlled environmental conditions of temperature and relative humidity. The mass gain results show that the (time)1/4 law can be used to obtain an accurate linear relationship between long-term mass gain and time at almost all firing temperatures and at all different compositions. The presence of alkali metals was found to strongly affect the chemical combination of fired clay ceramics with moisture and hence affect the rate of mass gain. On the other hand, alkaline earth metals were found to produce similar reaction kinetics to kaolinite alone. BET surface area and X-ray diffraction results confirm that there is a correlation between the reactivity with moisture and both the specific surface area and crystallinity of fired clay ceramics.
1030

Some effects of variation in weather and soil water storage on canopy evapotranspiration and net photosynthesis of a young douglas-fir stand

Price, David Thomas January 1987 (has links)
Measurements of the energy balances and net photosynthesis rates of two low productivity coniferous forest canopies (12 and 22 years old), were made successfully during both wet and dry growing seasons, using a modified Bowen Ratio method. Canopy conductances (gc) were calculated from canopy evaporation rates (E) using the Penman-Monteith equation. A model was developed to predict canopy growth and evaporation rates from basic soil and weather data, and compared with the measured data. The photosynthesis model was physiologically based, derived from recent work of Farquhar and coworkers. The canopy conductance model used an empirical approach, based on simple relationships with recorded environmental variables, while canopy E was predicted from the Penman-Monteith equation. Findings were: (1) Daytime E and canopy net photosynthesis rates (Fc) were generally lower in the younger canopy. (2) In the old canopy, E was more strongly decoupled from net irradiance (Rn) and more dependent on the atmospheric vapour pressure deficit (D) in accordance with the predictions of McNaughton and Jarvis (1983). (3) In the old canopy, Fc was significantly reduced by low soil water potential (Ψs) within the range of soil water storages at which measurements were made, while gc was less dependent on Ψs. From consideration of changes in intercellular C0₂ concentration, gc was not found normally limiting to Fc. (4) No simple relationship was apparent between solar irradiance (S) and F at the canopy level. However highest Fc and canopy water use efficiency ratios occurred on cloudy days with low air temperature and low D. (5) Night-time Fc measurements indicated that canopy respiration rates are generally very high and hence air temperature was a major factor limiting overall forest productivity. (6) The computer model could predict gc from four variables (D, S, root-zone soil water storage, W and time since dawn, t) with reasonable 2 success (r² 0.75). However, on days when gc was low, due to high D, E was occasionally significantly in error, because the Penman-Monteith equation is more sensitive to gc when the latter is low. Best agreement between measured and modelled E occurred on cloudy days when D was low and gc consequently high. (7) Values for the maximum rates of carboxylation, as limited by foliar carboxylase activity and electron transport rate, were set at one third of those reported by Farquhar and coworkers, in order to obtain best overall agreement between measured and modelled data. This requirement indicated that poor nutrition was also limiting to stand productivity. (8) Model prediction of canopy net photosynthesis was not satisfactory (r² 0.50), attributed mainly to using too simple an approach to estimating irradiance at the individual leaf level, and partly to unexplained variation in the measurements of Fc. In spite of its limitations, the model was found to respond realistically to changes in weather and Ψs, suggesting the approach was valid, and might be more successful with further development. / Forestry, Faculty of / Graduate

Page generated in 0.0184 seconds