• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 746
  • 228
  • 217
  • 96
  • 62
  • 49
  • 35
  • 35
  • 35
  • 35
  • 35
  • 34
  • 20
  • 12
  • 9
  • Tagged with
  • 1829
  • 921
  • 232
  • 214
  • 213
  • 173
  • 167
  • 121
  • 102
  • 95
  • 92
  • 87
  • 86
  • 84
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1591

Assessing Moisture Resilience of Wall Assemblies to Wind-Driven Rain Loads Arising from Climate Change

Xiao, Zhe 18 February 2022 (has links)
Moisture loads arising from the deposition of wind-driven rain (WDR) on building façades can induce detrimental effects to wall assembly components and can adversely influence their long-term performance. Wind-driven rain as a climatic phenomenon will inevitably be affected by the evident changing climate in the near future. Wall assemblies subjected to wind-driven rain loads will also perform differently due to a varying moisture environment over the course of time. The performance of the building envelope, including the wall assembly, largely determines the serviceability of a building over its life cycle. Thus, it is essential for practitioners to understand and to be able to assess such performance. In this study, a complete procedure has been developed to permit assessing the moisture resilience of wall assemblies to wind-driven rain loads arising from climate change. The development of this procedure included four phases. In the first phase the historical and projected climate data was analysed to identify the possible wind-driven rain conditions to which a wall assembly may be exposed. The magnitudes of wind-driven rain and driving-rain-wind-pressure for different return periods were also investigated. Based on the results from phase one, a watertightness test protocol was established taking into consideration the possible ranges of wind-driven rain and driving-rain-wind-pressure as they may occur spatially, as well as temporally, across Canada. The range of watertightness test parameters was accommodated in the newly built Dynamic Wind and Wall Testing Facility (DWTF) at the National Research Council Canada. Thereafter in phase two of the research, wall assemblies having different configurations were tested in the DWTF following the test protocol to obtain the moisture load for wall assemblies under different wind-driven rain conditions. Such moisture loads were formulized and used in the third phase, where hygrothermal simulations were conducted to derive the hygrothermal parameters of the wall assemblies subjected to historical and projected climate data. In the final research development phase, different criteria and methods were explored to describe the performance of wall assemblies based on the hygrothermal parameters. During the development of the moisture resilience assessment procedure, a novel wind-driven-rain-pressure-index was devised to describe the extent of the effects arising from the concurrent action of wind-driven rain and driving-rain-wind-pressure loads on a vertical wall assembly; a new two-step approach was established to formulize the watertightness test results and thereby permit calculating the moisture load using values of hourly wind-driven-rain and hourly driving-rain-wind-pressure of a given location; a novel severity index was proposed to quantitatively describe the damage events arising from such moisture load on the wall assemblies. The moisture performance of tested wall assemblies subjected to historical and projected future climate were compared and discussed. The risks of occurrence of damage events in wall assemblies during different time periods were also demonstrated.
1592

Bryophyte Community Response to Prescribed Fire and Thinning in Mixed-Oak Forests of the Unglaciated Allegheny Plateau

Wiley, John J., Jr. 17 June 2013 (has links)
No description available.
1593

Measurement and Modeling of Fire Behavior in Leaves and Sparse Shrubs

Prince, Dallan R 01 July 2014 (has links) (PDF)
Wildland fuels and fire behavior have been the focus of numerous studies and models which provide operational support to firefighters. However, fuel and fire complexity in live shrubs has resulted in unexpected and sometimes aggressive fire behavior. The combustion of live fuels was studied and modeled, and the results were assimilated into a shrub-scale fire behavior model which assumes fire spread by flame-fuel overlap. Fire spread models have usually assumed that radiation heat transfer is responsible for driving fire spread, but that assumption is a topic of continuing debate, and appears to contradict some experimental observations. A convection-based shrub-scale fire spread model has been developed, building on a heritage of experiments and modeling previously performed at Brigham Young University. This project has (1) characterized fundamental aspects of fire behavior, (2) integrated the resulting submodels of fire behavior into an existing shrub model framework, and (3) produced shrub-scale fire spread experiments and (4) made model comparisons. This research models fire spread as a convection-driven phenomenon and demonstrates strategies for overcoming some of the challenges associated with this novel approach.
1594

Effects of Reclaimed Asphalt Pavement on Mechanical Properties of Base Materials

Cooley, Dane A. 17 November 2005 (has links) (PDF)
Reuse of reclaimed asphalt pavement (RAP) in the full-depth recycling (FDR) process is a cost-effective and environmentally responsible method of asphalt pavement reconstruction. Although FDR has been used for several years in some locations, the effect of RAP on the mechanical properties of recycled base materials has not been well documented. The purpose of this research was to investigate the influence of RAP on the mechanical properties of recycled base materials typical of northern Utah. Two sources of RAP, two sources of base, and RAP contents of 0, 25, 50, 75, and 100 percent were utilized in a full-factorial experimental design with three replicates of each unique combination. Testing procedures consisted of material classifications, compaction tests, and evaluations of strength, stiffness, and moisture susceptibility of each material blend. The California bearing ratio (CBR) test was used to measure strength, the free-free resonant column test was used to measure stiffness, and the tube suction test (TST) was used to measure moisture susceptibility. Once all the testing was completed, a fixed effects analysis of variance (ANOVA) was performed on each of the test results, or dependent variables. The independent variables were RAP content, RAP type, and base type, together with all their interactions. Results of the ANOVA were used to quantify the effects of RAP on the mechanical properties of the base materials. The data indicate that CBR values decrease as RAP content increases, with the greatest percentage reduction occurring with the addition of 25 percent RAP. For stiffness testing at the optimum moisture content determined for each blend, the general trend was a decrease in stiffness from 0 percent RAP to 25 percent RAP, followed by a steady increase in stiffness as the RAP content was increased from 25 to 100 percent. Following a 72-hr drying period at 140ºF, however, the general trend reversed; an increase in stiffness occurred as the RAP content was increased from 0 to 25 percent, and a steady decrease in stiffness was observed for RAP contents above 25 percent. The TST data suggest that additions of 25 and 50 percent RAP actually increase the moisture susceptibility of the recycled material compared to the neat base, although the blended material tested in this study was classified as non-moisture-susceptible when the RAP content was 75 percent or higher. Because of the marked impact of RAP content on the mechanical properties of recycled base materials, engineers should accurately determine asphalt layer thicknesses prior to pavement reconstruction and carefully determine the optimum blending depth for each project. While asphalt milling or base overlays may be required in some locations to avoid excessively high RAP contents, reduced blending depths may be warranted in other areas to prevent the use of low RAP contents. In summary, while the use of RAP in the FDR process is environmentally responsible and offers potentially significant cost savings, thicker pavement base layers, base stabilization, or both may be required in many instances to ensure adequate long-term pavement performance.
1595

Epidemiology of Ustilago bullata Berk. on Bromus tectorum L. and Implication for Biological Control

Boguena, Toupta 15 August 2003 (has links) (PDF)
The seedling-infecting pathogen Ustilago bullata Berk. is a naturally occurring biological control agent for cheatgrass (Bromus tectorum L.). The effects of temperature and nutrients on pathogen teliospore germination behavior and the effects of temperature on host seed germination were examined. The effects of temperature on sporidial proliferation, host infection in a temperature-controlled environment and in a field setting for eight populations were investigated. The infection success of Ustilago bullata on Bromus tectorum in cultivated fields as a function of seeding date, inoculation method, inoculum density, supplemental watering, and litter was also investigated. Teliospores germinated faster on potato dextrose agar than on water agar. Teliospores germinated slowly at temperatures far from the optimum of 15 and 20 C. There were among population variations in teliospore germination and sporidial proliferation, but differences among populations were much more pronounced at temperatures below 15 C. Infection also decreased and varied far from the optimum with almost no infection at 2.5 C in a controlled-environment and in the field for the December-planted seeds. Warmer early fall rather than the colder late fall was suitable for successful infection. This agreed with both laboratory and controlled-environment experiments. Intratetrad mating was observed with teliospores at 2.5 C. Teliospore germination tracked seed germination closely with teliospore germination rate exceeding the host seed germination rate over the range of 10 to 25 C where both were measured. Below 10 C, teliospore germination rate fell below host seed germination. This phenomenon was associated with lower infection percentages, suggesting that teliospore germination needed to be ahead of the seed for maximum infection. Inoculum density was positively correlated with infection rate. Litter significantly increased infection, while supplemental watering significantly increased plant establishment. Since teliospores from different populations showed similar germination patterns at temperatures typical of autumn seedbeds in the Intermountain West, it may not be necessary to use locally-adapted pathogen populations in biological control program. A biocontrol program is most likely to be effective under a scenario where autumn precipitation permits emergence of most of the host seed bank as a fall cohort.
1596

Starch Resin Moisture Level Effect on Injection Molding Processability and Molded Part Mechanical Properties with Pure Starch Resin and Polymer Blends

Ellingson, Jordan M. 16 March 2013 (has links) (PDF)
The current and forecasted global consumption of plastic packaging and products through the 21st century combined with the already reported and growing negative impact of plastics on the environment due to plastics being synthesized from nonrenewable resources that do not biodegrade is of serious concern. However, recent advances in starch technology including the development of thermoplastic starch (TPS) materials —polymers that are both renewable and biodegradable—have brought hope to reducing this impact. The mechanical properties of thermoplastic starch have often been improved by blending with synthetic polymers. One issue that arises with blending is volatilization of the melt from moisture in the TPS materials. Ecostarch™ a proprietary, pelletized thermoplastic starch resin formulated from potato starch, was processed and tested to observe injection molding processability at various moisture levels, in pure TPS as well as various blend ratios with high-density polyethylene (HDPE) and polypropylene (PP). This study evaluated and analyzed the effects of the TPS pellet moisture content on void formation in the plastic pre-injection melt and subsequent molded part mechanical properties. Statistical analysis of the test results showed that moisture had a significant effect on void formation in the plastic melt. In TPS/HDPE blends, voids percent (as measured by cross section area) increased by 300-350% from 0.6% to 1.4% moisture levels. In unblended TPS, void percent increased by 150% from 0.4% to 1.4% moisture levels. In the unblended TPS parts, impact strength (energy in ft-lb) was decreased by 1% from 0.6% to 1.4% moisture level. In the TPS/HDPE and TPS/PP blends, there was no significant effect on impact strength due to the moisture percent levels of the TPS. Modulus decreased by 25% from 0.4% to 1.4% moisture level in unblended TPS parts. From 0.6% to 1.4% change in TPS moisture content, the modulus of the TPS/HDPE blend decreased by 9% at a 30% TPS/70% HDPE blend and decreased by 14% at a 70% TPS/30% HDPE blend. Though the moisture of TPS did not have a significant impact on the tensile strength of TPS/HDPE blends, the tensile strength of TPS/PP blend samples were significantly affected: a change from 0.6% to 1.4% moisture increased tensile strength 34% at a 70% TPS/30% PP blend and increased tensile strength by 22% at a 30% TPS/70% PP blend. Thus the results of this study highlight the relationships between moisture, voids, and mechanical performance of TPS and TPS/Polymer blends.
1597

Wet-Thermal Time and Plant Available Water in the Seedbeds and Root Zones Across the Sagebrush Steppe Ecosystem of the Great Basin

Cline, Nathan Lyle 01 March 2014 (has links) (PDF)
Following wildfires, plant materials are direct-seeded to limit erosion and annual weed invasion. Seedlings often fail to establish because selected plant materials are not always well adapted to local soil moisture and temperature conditions. In an effort to help improve plant materials selection and to evaluate sites potential revegetation, we have worked toward developing methodology to predict germination and root growth based on site specific soil moisture and temperature conditions. First, we characterized the seedbed environment of 24 sagebrush (Artemisia spp.) steppe sites throughout the Intermountain West to determine the wet-thermal time of five temperature ranges relevant to germination response and thermal-time model accuracy (Chapter 1). Second, we predicted potential germination for 31 plant materials at those same sites (Chapter 2). Third, in preparation to predict root growth at multiple sites, we characterized the drying patterns and the associated plant-available water for in the seedling root zone across nine woodland (Juniperus spp. and Piñus spp.) sites (Chapter 3). For all of these studies, we determined the effects of tree reduction and tree infilling phase at time of tree reduction. Our key findings are that seedbeds generally sum most wet-thermal time at temperature ranges where the germination rates fit thermal accumulation models quite well (R2 ≥ 0.7). The majority of plant materials summed enough wet-thermal time for a potential germination at most sites during the fall, early spring, and late spring. Soil drying primarily occurs from the soil surface downward. Drying rates and Plant available water associated with the first drying event increased with increasing soil depth. Root zone (1-30 cm) plant-available water increased before and decreased after the first spring drying event with increasing soil depth. Tree removal with increasing pretreatment tree infilling phase generally added progress toward germination, plant available water, and wet-thermal time in the seedbed and root zones of the sagebrush steppe in the Great Basin. Because soil moisture and temperature does not appear to be limiting for potential germination, combining germination and root growth models to create a more comprehensive model may allow for a more robust prediction for seedling survival. For either root growth or combined germination and root growth models, plant available water and wet-thermal time before the first spring drying period hold the most potential for successfully predicting seedling survival.
1598

An Analytical Solution Applied to Heat and Mass Transfer in a Vibrated Fluidised Bed Dryer

Picado, Apolinar January 2011 (has links)
A mathematical model for the drying of particulate solids in a continuous vibrated fluidised bed dryer was developed and applied to the drying of grain wetted with a single liquid and porous particles containing multicomponent liquid mixtures. Simple equipment and material models were applied to describe the process. In the plug-flow equipment model, a thin layer of particles moving forward and well mixed in the direction of the gas flow was regarded; thus, only the longitudinal changes of particle moisture content and composition as well as temperature along the dryer were considered. Concerning the material model, mass and heat transfer in a single isolated particle was studied. For grain wetted with a single liquid, mass and heat transfer within the particles was described by effective transfer coefficients. Assuming a constant effective mass transport coefficient and effective thermal conductivity of the wet particles, analytical solutions of the mass and energy balances were obtained. The variation of both transport coefficients along the dryer was taken into account by a stepwise application of the analytical solution in space intervals with non-uniform inlet conditions and averaged coefficients from previous locations in the dryer. Calculation results were verified by comparison with experimental data from the literature. There was fairly good agreement between experimental data and simulation but the results depend strongly on the correlation used to calculate heat and mass transfer coefficients.   For the case of particles containing a multicomponent liquid mixture dried in the vibrated fluidised bed dryer, interactive diffusion and heat conduction were considered the main mechanisms for mass and heat transfer within the particles. Assuming a constant matrix of effective multicomponent diffusion coefficients and thermal conductivity of the wet particles, analytical solutions of the diffusion and conduction equations were obtained. The equations for mass transfer were decoupled by a similarity transformation and solved simultaneously with conduction equation by the variable separation method. Simulations gave a good insight into the selectivity of the drying process and can be used to find conditions to improve aroma retention during drying.   Also, analytical solutions of the diffusion and conduction equations applied to liquid-side-controlled convective drying of a multicomponent liquid film were developed. Assuming constant physical properties of the liquid, the equations describing interactive mass transfer are decoupled by a similarity transformation and solved simultaneously with conduction equation and the ordinary differential equation that describes the changes in the liquid film thickness. Variations of physical properties along the process trajectory were taken into account as in the previous cases. Simulation results were compared with experimental data from the literature and a fairly good agreement was obtained. Simulations performed with ternary liquid mixtures containing only volatile components and ternary mixtures containing components of negligible volatility showed that it is difficult to obtain an evaporation process that is completely controlled by the liquid-side mass transfer. This occurs irrespective of the initial drying conditions.   Despite simplifications, the analytical solution of the material model gives a good insight into the selectivity of the drying process and is computationally fast. The solution can be a useful tool for process exploration and optimisation. It can also be used to accelerate convergence and reduce tedious and time-consuming calculations when more rigorous models are solved numerically. / QC 20110614
1599

Development of a semi-automatic approach to estimate pre-event soil moisture for Flash Flood Guidance in low mountain ranges (Saxony)

Luong, Thanh Thi 12 August 2022 (has links)
This thesis is written as a cumulative dissertation based on peer-reviewed papers and supplemented by yet unpublished results. It presents methods and results that contribute to a novel approach for estimating water storage within the soil-water-plant system at a single site or in a small catchment (< 100 km2). The focus is on estimating the current/pre-event condition of a study area using simulated soil moisture and applying it as an indicator for flash flood forecasting. These two steps were combined in a semi-automatic framework that was used as a tool for flash flood monitoring after the Flash Flood Guidance (FFG) concept. This includes catchments for which Hydro-meteorological data and reliable site characteristics are not available. The overall objective was to demonstrate the capabilities and limitations of the regionally applicable modeling framework based on a lumped-physical model and open-source input data. The questions to be answered are: How reliable are the model outputs estimated by an uncalibrated-lumped model based on regional parameterization and forcing data? What are the potential uncertainties and limitations of such a framework? What are the potential applications of water storage in flood monitoring? The data were derived from freely available datasets. Meteorological input data can come from various sensor networks integrated in an open sensor web, mainly from the German Meteorological Service (DWD) and e.g., the forest climate stations of Sachsenforst. The model description required datasets for elevation (10 m, State Office for Environment, Agriculture and Geology-LfULG), land cover (Copernicus: Land Cover 100m), soil characteristics (BK50, LfULG) and soil profiles from the German National Forest Inventory (NFI). In addition, satellite-based soil moisture product (SMAP-L4-GPH from the National Aeronautics and Space Administration-NASA), water gauges data (LfULG) and eddy covariance flux cluster sites of the chair Meteorology at TU Dresden were used for validation. The first publication provides the framework and elaborates on the integration of a model into the open-data platform. The BROOK90 model (R version) was embedded in an open sensor web to estimate daily water balance components for more than 6,000 (sub-) catchments in Saxony. The model performance was validated with stream gauge observations in ten selected head catchments for discharge and with SMAP-L4-GPH for evapotranspiration and soil moisture. The results indicate that the framework is able to provide reliable soil retention estimates in high resolution. The second publication addresses the potential use of radar precipitation in this framework. Here the focus is on examining long-term radar-derived precipitation to improve water balance estimates due to its advantages in spatial coverage. The DWD’s re-analysis radar product, RADKLIM, was applied and aggregated for daily model input. A comparison between radar and rain gauge precipitation was performed to evaluate the quality of the product at the study sites, including the compensation for the catch loss in precipitation using the Richter correction. The results show the satisfactory performance of the framework with radar precipitation. The third publication demonstrates the application of model output to flood warnings. FFG was modified and applied to estimate rainfall thresholds considering the effects of antecedent soil moisture. Once rainfall threshold curves are calculated, only information on rainfall and soil moisture information is needed to issue a warning of a potential flash flood. The method was applied in the Wernersbach catchment in the Tharandt Forest and validated with historical events. The results of the contingency table show the potential of this tool for flash flood warning, but it should be tested with other rainfall runoff models and more catchments prone to flash floods.:Abstract/Zusammenfassung/Tóm tắt 1. Introduction 1.1 Motivation and scope 1.2 Problem formulation 1.3 Target setting 1.4 Structure of the thesis 2. Adjusted Flash Flood Guidance (FFG) framework 2.2 Terminology and definitions 2.2.1 Flash flood 2.2.2 Small catchment 2.3 FFG concept 2.4 Adjusted FFG framework 3. Core publications of the PhD thesis 4. Major findings 5. Conclusions and outlook References List of Abbreviations List of figures List of the author’s publication Appendixes including the core publications Erklärung / Die vorliegende Arbeit ist eine kumulative Dissertation, die auf begutachteten Arbeiten basiert und durch bisher unveröffentlichte Ergebnisse ergänzt wird. Sie stellt Methoden und Ergebnisse vor, die zu einem neuartigen Ansatz zur Abschätzung der Wasserspeicherung im System Boden-Wasser-Pflanze an einem einzelnen Standort oder in einem kleinen Einzugsgebiet (< 100 km2) beitragen. Der Schwerpunkt liegt auf der Abschätzung des aktuellen/vor einem Ereignis herrschenden Zustands eines Untersuchungsgebiets unter Verwendung simulierter Bodenfeuchte und deren Anwendung als Indikator für die Vorhersage von Sturzfluten. Diese beiden Schritte wurden in einem halbautomatischen Modell zusammengefasst, das als Werkzeug für die Überwachung von Sturzfluten nach dem Konzept des Flash Flood Guidance (FFG) verwendet wird. Dies schließt Standorte/Einzugsgebiete ein, für die keine hydrometeorologischen Daten und/oder zuverlässige Standortmerkmale verfügbar sind. Das Gesamtziel bestand darin, die Fähigkeiten und Grenzen des regional anwendbaren Modells auf der Grundlage eines pauschalen physikalischen Modells und von Open-Source-Eingangsdaten zu demonstrieren. Die zu beantwortenden Fragen lauten: Wie zuverlässig sind die von einem unkalibrierten eindimensionalen Modell auf der Grundlage regionaler Parametrisierungs- und Antriebsdaten geschätzten Modellergebnisse? Was sind die potenziellen Unsicherheiten und Grenzen eines solchen Modells? Welches sind die möglichen Anwendungen der simulierten Komponenten des Wasserhaushalts bei der Überwachung von Hochwasser? Die Daten werden aus frei verfügbaren Datensätzen abgeleitet. Die meteorologischen Eingangsdaten stammen aus verschiedenen Sensornetzwerken, die in einem Open Sensor Web integriert sind, hauptsächlich vom Deutschen Wetterdienst (DWD) und z.B. den Waldklimastationen von Sachsenforst. Für die Modellbeschreibung wurden Datensätze für Geländehöhe (10 m, Landesamt für Umwelt, Landwirtschaft und Geologie - LfULG), Landbedeckung (Copernicus: Land Cover 100m), Bodeneigenschaften (BK50, LfULG) und Bodenprofile aus der Bundeswaldinventur (BWI) benötigt. Darüber hinaus werden satellitengestützte Bodenfeuchteprodukte (SMAP-L4-GPH der National Aeronautics and Space Administration-NASA), Pegeldaten (LfULG) und Eddy-Kovarianz-Flusscluster-Standorte des Lehrstuhls für Meteorologie der TU Dresden zur Validierung verwendet. Die erste Veröffentlichung liefert den Rahmen und erläutert die Integration eines Modells in die offene Datenplattform. Das Modell BROOK90 (R-Version) wurde in ein offenes Sensornetz eingebettet, um tägliche Wasserhaushaltskomponenten für mehr als 6,000 (Teil-)Einzugsgebiete in Sachsen zu schätzen. Die Leistung des Modells wurde anhand von Pegelbeobachtungen in zehn ausgewählten Einzugsgebieten für den Abfluss und mit SMAP-L4-GPH für die Evapotranspiration und Bodenfeuchte validiert. Die Ergebnisse zeigen, dass das System in der Lage ist, zuverlässige Schätzungen der Bodenretention in hoher Auflösung zu liefern. Die zweite Veröffentlichung befasst sich mit der möglichen Nutzung von Radarniederschlägen in diesem Rahmen. Hier liegt der Schwerpunkt auf der Untersuchung des langfristigen, vom Radar abgeleiteten Niederschlags zur Verbesserung der Wasserbilanzschätzungen aufgrund seiner Vorteile bei der räumlichen Abdeckung. Das Reanalyse-Radarprodukt des DWD, RADKLIM, wurde verwendet und für tägliche Modelleingaben aggregiert. Es wurde ein Vergleich zwischen Radar- und Regenmesser-Niederschlag durchgeführt, um die Qualität des Produkts an den Untersuchungsstandorten zu bewerten, einschließlich der Kompensation des Niederschlagsverlusts durch die Richter-Korrektur. Die Ergebnisse zeigen die zufriedenstellende Leistung des Rahmens mit Radarniederschlag. Die dritte Veröffentlichung demonstriert die Anwendung der Modelldaten auf Hochwasserwarnungen. Der Leitfaden für Sturzflutwarnungen wurde modifiziert und zur Schätzung der Niederschlagsschwellen unter Berücksichtigung der Auswirkungen der vorherrschenden Bodenfeuchte angewandt. Sobald die Niederschlagsschwellenkurven berechnet sind, werden nur noch Informationen über Niederschlag und Bodenfeuchte benötigt, um eine Warnung vor einer möglichen Sturzflut auszusprechen. Die Methode wurde im Einzugsgebiet des Wernersbachs und im Tharandter Wald angewandt und mit historischen Ereignissen validiert. Die Ergebnisse der Kontingenztabelle zeigen das Potenzial dieses Werkzeugs für die Sturzflutwarnung, es sollte jedoch mit anderen Niederschlagsabflussmodellen und weiteren Einzugsgebieten, die für Sturzfluten anfällig sind, getestet werden.:Abstract/Zusammenfassung/Tóm tắt 1. Introduction 1.1 Motivation and scope 1.2 Problem formulation 1.3 Target setting 1.4 Structure of the thesis 2. Adjusted Flash Flood Guidance (FFG) framework 2.2 Terminology and definitions 2.2.1 Flash flood 2.2.2 Small catchment 2.3 FFG concept 2.4 Adjusted FFG framework 3. Core publications of the PhD thesis 4. Major findings 5. Conclusions and outlook References List of Abbreviations List of figures List of the author’s publication Appendixes including the core publications Erklärung / Luận án tiến sĩ này được viết như một luận án tích lũy dựa trên các bài báo đã được bình duyệt và được bổ sung bởi các kết quả chưa được công bố. Nó trình bày các phương pháp và kết quả góp phần vào một cách tiếp cận mới để ước tính trữ lượng nước trong hệ thống đất-nước- thực vật tại một địa điểm hoặc trong một lưu vực nhỏ (<100 km2). Trọng tâm là ước tính tình trạng hiện tại / trước sự kiện của khu vực nghiên cứu bằng cách sử dụng độ ẩm đất mô phỏng và áp dụng nó như một chỉ báo để dự báo lũ quét. Hai bước này được kết hợp trong một khuôn khổ bán tự động được sử dụng như một công cụ để giám sát lũ quét dựa theo khái niệm Hướng dẫn về lũ quét (FFG). Điều này bao gồm các địa điểm / lưu vực không có sẵn dữ liệu khí tượng thủy văn và / hoặc các đặc điểm thiếu thông tin mô tả chia tiết đáng tin cậy. Mục tiêu tổng thể là chứng minh các khả năng và hạn chế của khung mô hình áp dụng trong khu vực dựa trên một mô hình vật lý tổng hợp và dữ liệu đầu vào nguồn mở. Các câu hỏi cần được trả lời là: Các kết quả đầu ra của mô hình được ước tính bằng một mô hình gộp chưa hiệu chỉnh dựa trên tham số vùng và dữ liệu đáng tin cậy đến mức nào? Những điểm không chắc chắn và hạn chế tiềm ẩn của một khuôn khổ như vậy là gì? Các ứng dụng tiềm năng của thành phần cân bằng nước mô phỏng trong giám sát lũ lụt là gì? Dữ liệu được lấy từ các bộ dữ liệu miễn phí và có sẵn. Dữ liệu đầu vào về khí tượng đến từ các mạng cảm biến khác nhau được tích hợp trong một Open Sensor Web, chủ yếu từ Cơ quan Khí tượng Đức (DWD) và các trạm khí hậu rừng của Sachsenforst. Mô tả mô hình yêu cầu bộ dữ liệu về độ cao (10 m, Văn phòng bang về Môi trường, Nông nghiệp và Địa chất-LfULG), lớp phủ đất (Copernicus: Land Cover 100m), đặc điểm của đất (BK50, LfULG) và cấu hình đất từ Kiểm kê Rừng Quốc gia Đức (NFI). Ngoài ra, sản phẩm độ ẩm của đất dựa trên vệ tinh (SMAP-L4-GPH từ Cơ quan Hàng không và Vũ trụ Quốc gia-NASA), dữ liệu các trạm thủy văn (LfULG) và các cụm địa điểm eddy covariance được giám sát bởi khoa Khí tượng học tại TU Dresden được sử dụng để xác nhận kết quả mô hình đầu ra. Ấn phẩm đầu tiên cung cấp khuôn khổ và trình bày chi tiết về việc tích hợp một mô hình vào nền tảng dữ liệu mở. Mô hình BROOK90 (phiên bản R) được nhúng vào một trang web cảm biến mở để ước tính các thành phần cân bằng nước hàng ngày cho hơn 6000 lưu vực (phụ) ở Sachsen. Hiệu suất của mô hình đã được xác nhận với các quan sát bằng dữ liệu dòng chảy ở mười lưu vực đầu nguồn được chọn và với SMAP-L4-GPH cho thành phần thoát hơi nước và độ ẩm của đất. Kết quả chỉ ra rằng khung có thể cung cấp các ước tính đáng tin cậy về khả năng giữ nước của đất ở độ phân giải cao. Ấn phẩm thứ hai đề cập đến khả năng sử dụng lượng mưa radar trong khuôn khổ này. Ở đây, trọng tâm là kiểm tra lượng mưa dài hạn có nguồn gốc từ radar để cải thiện ước tính cân bằng nước do lợi thế của nó trong phạm vi bao phủ không gian. Sản phẩm radar phân tích lại của DWD, RADKLIM, đã được áp dụng và tổng hợp để nhập mô hình hàng ngày. So sánh giữa lượng mưa bằng radar và máy đo mưa đã được thực hiện để đánh giá chất lượng của sản phẩm tại các điểm nghiên cứu, bao gồm cả việc bù đắp cho lượng mưa thất thoát bằng cách sử dụng hiệu chỉnh độ Richter. Kết quả cho thấy hiệu suất khả quan của khung với lượng mưa radar. Ấn phẩm thứ ba trình bày việc áp dụng đầu ra mô hình để cảnh báo lũ lụt. Hướng dẫn về lũ quét đã được sửa đổi và áp dụng để ước tính ngưỡng lượng mưa xem xét ảnh hưởng của độ ẩm đất trước đây. Khi đường cong ngưỡng mưa được tính toán, chỉ cần thông tin về lượng mưa và thông tin về độ ẩm của đất để đưa ra cảnh báo về khả năng xảy ra lũ quét. Phương pháp này đã được áp dụng ở lưu vực Wernersbach, trong Rừng Tharandt và được xác nhận với các sự kiện lịch sử. Kết quả của bảng dự phòng cho thấy tiềm năng của công cụ này để cảnh báo lũ quét, nhưng nó nên được thử nghiệm với các mô hình dòng chảy lượng mưa khác và các lưu vực dễ xảy ra lũ quét hơn.:Abstract/Zusammenfassung/Tóm tắt 1. Introduction 1.1 Motivation and scope 1.2 Problem formulation 1.3 Target setting 1.4 Structure of the thesis 2. Adjusted Flash Flood Guidance (FFG) framework 2.2 Terminology and definitions 2.2.1 Flash flood 2.2.2 Small catchment 2.3 FFG concept 2.4 Adjusted FFG framework 3. Core publications of the PhD thesis 4. Major findings 5. Conclusions and outlook References List of Abbreviations List of figures List of the author’s publication Appendixes including the core publications Erklärung
1600

Underlag för projektering av ytterväggar : Kvalitativ analys av ytterväggar ur ett livslängdsperspektiv med fokus på fuktsäkerhet, robusthet och kostnad / Qualitative Analysis of Exterior Walls from a Lifetime Perspective Focusing on Moisture safety, Robustness and Cost : Underlag för projektering av ytterväggar

Pettersson, Beatrice, Olsson, Carolina January 2019 (has links)
Vid projektering av ytterväggar ställs höga krav på funktion och utformning. Ytterväggar har en mängd olika konstruktionslösningar beroende på stomsystem, fasadmaterial och andra förutsättningar. Uppdragsgivaren WSP, vill underlätta kvalitetssäkringen och minska tidsåtgången vid projektering med hjälp av framtagna typdetaljer. Typdetaljerna är utformade med hänsyn till aspekterna fuktsäkerhet, robusthet och kostnad. Intervjuer med konstruktörer, litteraturstudier samt kontakt med produktleverantörer, ligger till grund för arbetet. Utifrån analys av insamlat material har konstruktionslösningar tagits fram utifrån en maximal livslängd. Arbetet har resulterat i två typdetaljer för tung stomme och tre för lätt stomme, med fasadmaterialen puts, tegel samt skivmaterial. Tillhörande teknisk beskrivning, U-värde och kostnadsbild har tagits fram för vardera typdetalj. / Moisture saftey; Robustness; Cost; Exterior wall; Light frame; Heavy frame; Construction details   Abstract på engelska: Function and design have always been critically important when designing exterior walls. Several designs can be possible but are largely dependent upon the framework system, facade material as well as various other considerations. The client, WSP, wish to guarantee quality whilst reducing planning time but also maintaining factors such as moisture safety, robustness and cost. The basis of the work consisted of interviews with designers, revision of literature and product supplier liaison. Based upon analysis of collected material, the designs have been developed to ensure a maximum life span. The result has produced both heavy and light frame designs by utilising plaster, brick and sheet materials for the facade construction. The relevant technical descriptions, U-values and overall cost estimates have been developed for each construction details.

Page generated in 0.0479 seconds