• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 743
  • 228
  • 217
  • 96
  • 62
  • 49
  • 35
  • 35
  • 35
  • 35
  • 35
  • 34
  • 19
  • 12
  • 9
  • Tagged with
  • 1820
  • 920
  • 231
  • 214
  • 213
  • 173
  • 167
  • 122
  • 102
  • 93
  • 92
  • 87
  • 86
  • 84
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Modeling the transient behavior of a run-around heat and moisture exchanger system

Seyed Ahmadi, Mehran 25 November 2008
In this thesis, a numerical model for coupled heat and moisture transfer in a run around membrane energy exchanger (RAMEE) with a liquid desiccant as a coupling fluid is developed. The numerical model is two dimensional, transient and is formulated using the finite difference method with an implicit time discretization. The model for the case of only heat transfer for a single heat exchanger is compared to an available analytical solution and good agreement is obtained. It is shown that the discrepancy between the numerical and theoretical dimensionless bulk outlet temperature of the fluids is less than 4% during the transient period. The model is also validated for the case of simultaneous heat and moisture transfer using experimental data measured during the laboratory testing of a RAMEE system. The results for both sensible and latent effectiveness showed satisfactory agreement at different operating conditions. However, there are some discrepancies between the simulation and the experimental data during the transient times. It is proposed that these discrepancies may be due to experimental flow distribution problems within the exchanger. The maximum average absolute differences between the measured and simulated transient effectivenesses were 7.5% and 10.3% for summer and winter operating conditions, respectively.<p> The transient response of the RAMEE system for step changes in the inlet supply air temperature and humidity ratio is presented using the numerical model. In addition, the system quasi steady state operating conditions are predicted as the system approaches its steady state operating condition. The effect of various dimensionless parameters on the transient response is predicted separately. These included: the number of heat transfer units, thermal capacity ratio, heat loss/gain ratio, storage volume ratio and the normalized initial salt solution concentration. It is shown that the initial salt solution concentration and the storage volume of the salt solution have significant impacts on the transient response of the system and the heat loss/gain rates from/to the circulated fluid flow can change the system quasi steady effectiveness substantially. The detailed study of the transient performance of the RAMEE is useful to determine the transient response time of the system under different practical situations.
842

Transient moisture characteristics of spruce plywood

Osanyintola, Olalekan Fatai 22 December 2005
In this thesis, the moisture characteristics of spruce plywood are studied experimentally and numerically with special attention given to moisture storage and release as the indoor humidity changes diurnally. This is referred to as the moisture buffering capacity. Two test facilities (a glass jar facility and a transient moisture transfer facility) are used to measure the moisture accumulation and temperature and relative humidity profiles within spruce plywood. These measured data are used to determine the moisture buffering capacity of spruce plywood and validate a one-dimensional transient numerical model that can be used to calculate the transient heat and moisture transfer in spruce plywood. There is good agreement between the measured and simulated results over the range of test variables investigated. </p><p>This validated numerical model is used to investigate the effect of initial conditions, boundary conditions, thickness and humidity step change on the moisture buffering capacity. In addition, sensitivity studies are performed to investigate the effect of variations in material properties used in the numerical model. The properties that are considered in these sensitivity studies are the sorption isotherm, effective thermal conductivity, heat of sorption and effective diffusion coefficient. These studies show that the sorption isotherm has the greatest effect on the moisture buffering capacity, as well as the temperature and relative humidity profiles within spruce plywood. For example, a ± 10% change in sorption isotherm has a ± 7%, ± 6% and ± 10% effect on the moisture buffering capacity, and the relative temperature and relative humidity change, respectively. </p><p>This thesis also verifies the moisture diffusivity property for spruce plywood, which was developed by Olutimayin and Simonson (2005) to account for moisture storage in cellulose insulation for a single step change in humidity. It was found that for spruce plywood, the moisture penetration depth may be over predicted by an order of magnitude when moisture storage is neglected using a transient analytic solution which does not include moisture storage.
843

Evaluating Vadose Zone Moisture Dynamics using Ground-Penetrating Radar

Steelman, Colby Michael 09 February 2012 (has links)
Near-surface sediments in the vadose zone play a fundamental role in the hydrologic system. The shallow vadose zone can act as a buffer to delay or attenuate surface contaminants before they reach the water table. It also acts as a temporary soil moisture reservoir for plant and atmospheric uptake, and regulates the seasonal groundwater recharge process. Over the past few decades, geophysical methods have received unprecedented attention as an effective vadose zone characterization tool offering a range of non-invasive to minimally invasive techniques with the capacity to provide detailed soil moisture information at depths typically unattainable using conventional point-measurement sensors. Ground-penetrating radar (GPR) has received much of this attention due to its high sensitivity to the liquid water phase in geologic media. While much has been learned about GPR soil moisture monitoring and characterization techniques, it has not been evaluated across highly dynamic natural soil conditions. Consequently, GPR’s capacity to characterize a complete range of naturally occurring vadose zone conditions including wetting/drying and freeze/thaw cycles, is not yet fully understood. Further, the nature of GPR response during highly dynamic moisture periods has not been thoroughly investigated. The objective of this thesis is to examine the capacity of various surface GPR techniques and methodologies for the characterization of soil moisture dynamics in the upper few meters of vadose zone, and to develop measurement strategies capable of providing quantitative information about the current and future state of the shallow hydrologic system. To achieve this, an exhaustive soil moisture monitoring campaign employing a range of GPR antenna frequencies and survey acquisition geometries was initiated at three different agricultural field sites located in southern Ontario, Canada, between May 2006 and October 2008. This thesis represents the first attempt to evaluate multiple annual cycles of soil conditions and associated hydrological processes using high-frequency GPR measurements. Summaries of the seven major works embodied in this thesis are provided below. Direct ground wave (DGW) measurements obtained with GPR have been used in a number of previous studies to monitor volumetric water content changes in the root zone; however, these studies have involved controlled field experiments or measurements collected across limited ranges in soil moisture. To further investigate the capacity of the DGW method, multi-frequency (i.e., 225 MHz, 450 MHz and 900 MHz) common-midpoint (CMP) measurements were used to monitor a complete annual cycle of soil water content variations at three sites with different soil textures (i.e., sand, sandy loam and silt loam). CMP surveys permitted characterization of the nature and evolution of the near-surface electromagnetic wavefields, and their subsequent impact on DGW velocity measurements. GPR results showed significant temporal variations in both the near-surface wavefield and multi-frequency DGW velocities corresponding to both seasonal and shorter term variations in soil conditions. While all of the measurement sites displayed similar temporal responses, the rate and magnitude of these velocity variations corresponded to varying soil water contents which were primarily controlled by the soil textural properties. Overall, the DGW measurements obtained using higher frequency antennas were less impacted by near-surface wavefield interference due to their shorter signal pulse duration. The estimation of soil water content using GPR velocity requires an appropriate petrophysical relationship between the dielectric permittivity and volumetric water content of the soil. The ability of various empirical relationships, volumetric mixing formulae and effective medium approximations were evaluated to predict near-surface volumetric soil water content using high-frequency DGW velocity measurements obtained from CMP soundings. Measurements were collected using 225, 450 and 900 MHz antennas across sand, sandy loam and silt loam soil textures over a complete annual cycle of soil conditions. A lack of frequency dependence in the results indicated that frequency dispersion had minimal impact on the data set. However, the accuracy of soil water content predictions obtained from the various relationships ranged considerably. The best fitting relationships did exhibit some degree of textural bias that should be considered in the choice of petrophysical relationship for a given data set. Further improvements in water content estimates were obtained using a field calibrated third-order polynomial relationship and three-phase volumetric mixing formula. While DGW measurements provide valuable information within the root zone, the characterization of vertical moisture distribution and dynamics requires a different approach. A common approach utilizes normal-moveout (NMO) velocity analysis of CMP sounding data. To further examine this approach, an extensive field study using multi-frequency (i.e., 225 MHz, 450 MHz, 900 MHz) CMP soundings was conducted to monitor a complete annual cycle of vertical soil moisture conditions at the sand, sandy loam and silt loam sites. The use of NMO velocity analysis was examined for monitoring highly dynamic vertical soil moisture conditions consisting of wetting/drying and freeze/thaw cycles with varying degrees of magnitude and vertical velocity gradient. NMO velocity analysis was used to construct interval-velocity-depth models at a fixed location collected every 1 to 4 weeks. Time-lapse models were combined to construct temporal interval-velocity fields, which were converted into soil moisture content. These moisture fields were used to characterize the vertical distribution, and dynamics of soil moisture in the upper few meters of vadose zone. Although the use of multiple antenna frequencies provided varying investigation depths and vertical resolving capabilities, optimal characterization of soil moisture conditions was obtained with 900 MHz antennas. The integration of DGW and NMO velocity data from a single CMP sounding could be used to assess the nature of shallow soil moisture coupling with underlying vadose zone conditions; however, a more quantitative analyses of the surface moisture dynamics would require definitive knowledge of GPR sampling depth. Although surface techniques have been used by a number of previous researchers to characterize soil moisture content in the vadose zone, limited temporal sampling and low resolution near the surface in these studies impeded the quantitative analysis of vertical soil moisture distribution and its associated dynamics within the shallow subsurface. To further examine the capacity of surface GPR, an extensive 26 month field study was undertaken using concurrent high-frequency (i.e., 900 MHz) reflection profiling and CMP soundings to quantitatively monitor soil moisture distribution and dynamics within a sandy vadose zone environment. An analysis on the concurrent use of reflection and CMP measurements was conducted over two contrasting annual cycles of soil conditions. Reflection profiles provided high resolution traveltime data between four stratigraphic reflection events while cumulative results of the CMP sounding data set produced precise depth estimates for those reflecting interfaces, which were used to convert interval traveltime data into soil water content estimates. The downward propagation of episodic infiltration events associated with seasonal and transient conditions were well resolved by the GPR data. The GPR data also revealed variations in the nature of these infiltration events between contrasting annual cycles. The use of CMP soundings also permitted the determination of DGW velocities, which enabled better characterization of short-duration wetting/drying and freezing/thawing processes. This higher resolution information can be used to examine the nature of the coupling between shallow and deep moisture conditions. High-resolution surface GPR measurements were used to examine vertical soil moisture distribution and its associated dynamics within the shallow subsurface over a 26 month period. While the apparent ability of surface GPR methods to give high quality estimates of soil moisture distribution in the upper 3 meters of the vadose zone was demonstrated, the nature of these GPR-derived moisture data needed to be assessed in the context of other hydrological information. As a result, GPR soil moisture estimates were compared with predictions obtained from a well-accepted hydrological modeling package, HYDRUS-1D (Simunek et al., 2008). The nature of transient infiltration pulses, evapotranspiration episodes, and deep drainage patterns were examined by comparing them with vertical soil moisture flow simulations. Using laboratory derived soil hydraulic property information from soil samples and a number of simplifying assumptions about the system, very good agreement was achieved between measured and simulated soil moisture conditions without model calibration. The overall good agreement observed between forward simulations and field measurements over the vertical profile validated the capacity of surface GPR to provide detailed information about hydraulic state conditions in the upper few meters of vadose zone. A unique DGW propagation phenomenon was observed during early soil frost formation. High-frequency DGW measurements were used to monitor the seasonal development of a thin, high velocity frozen soil layer over a wet low velocity unfrozen substratum. During the freezing process, the progressive attenuation of a low velocity DGW and the subsequent development of a high velocity DGW were observed. Numerical simulations using GPRMAX2D (Giannopoulos, 2005) showed that low velocity DGW occurring after freezing commenced was due to energy leaking across the frozen layer from the spherical body wave in the unfrozen half space. This leaky phase progressively dissipated until the frozen layer reached a thickness equivalent to one quarter of the dominant wavelength in the frozen ground. The appearance of the high velocity DGW was governed by its destructive interference with the reflection events from the base of the frozen layer. This interference obscured the high velocity DGW until the frozen layer thickness reached one half of the dominant wavelength in the frozen ground. While GPR has been extensively used to study frozen soil conditions in alpine environments, its capacity to characterize highly dynamic shallow freeze-thaw processes typically observed in temperate environments is not well understood. High-frequency reflection profiles and CMP soundings were used to monitor the freezing and thawing process during the winter seasonal period at the sand and silt loam sites. Reflection profiles revealed the long-term development of a very shallow (<0.5 m) soil frost zone overlying unfrozen wet substratum. During the course of the winter season, long-term traveltime analysis yielded physical properties of the frozen and unfrozen layers as well as the spatial distribution of the base of the soil frost zone. Short-term shallow thawing events overlying frozen substratum formed a dispersive waveguide for both the CMP and reflection profile surveys. Inversion of the dispersive wavefields for the CMP data yielded physical property estimates for the thawed and frozen soils and thawed layer thickness. It was shown that GPR can be used to monitor very shallow freezing and thawing events by responding to changes in the relative dielectric permittivity of the soil water phase. The works embodied in this thesis demonstrate the effectiveness of high-frequency GPR as a non-invasive soil moisture monitoring tool under a full range of naturally occurring moisture conditions with the temporal and vertical resolution necessary to quantitatively examine shallow vadose zone moisture dynamics. Because this study encompassed an unprecedented range of naturally occurring soil conditions, including numerous short and long duration wetting/drying and freezing/thawing cycles, complex geophysical responses were observed during highly dynamic soil moisture processes. Analysis and interpretation of these geophysical responses yielded both qualitative and quantitative information about the state of the hydrologic system, and hence, provided a non-invasive means of characterizing soil moisture processes in shallow vadose zone environments. In the future, these GPR soil moisture monitoring strategies should be incorporated into advanced land-surface hydrological modeling studies to improve our understanding of shallow hydrologic systems and its impacts on groundwater resources.
844

Structural Material Investigation of Horse Hoof

García Cabrera, Miguel January 2013 (has links)
This research focuses on a study of the material parameters of horse hoof. The study of the problem with the factors that affect to the fastening of the shoe is not performed. Three different tests are carried out to obtain the behavior of the horn wall of the horse hoof in different ways, under physiological conditions and variation of hydration level. The first one is a tensile test to obtain both the force/displacement relation and the stress/strain relation and the parameters derived from them. The second is a hardness test to determine how the material resists to several kinds of permanent-shape changes when a force is applied.Finally, a microscopic study is performed to analyze the fracture surface after testing the specimens. A meticulous analysis of the results and a broad comparison with several researches are performed. The end of the thesis work suggests future works needed to solve the problem.
845

Pau-synthetic aperture: a new instrument to test potential improvements for future interferometric radiometers

Ramos Pérez, Isaac 27 February 2012 (has links)
The Soil Moisture and Ocean Salinity (SMOS) mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA). It was a direct response to the global observations of soil moisture and ocean salinity. Its goal is to produce global of these parameters using a dual-polarization L-band interferometric radiometer the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). This instrument is a new polarimetric two-dimensional (2-D) Y-shaped synthetic aperture interferometric radiometer based on the techniques used in radio-astronomy to obtain high resolution avoiding large antenna structures. MIRAS measures remotely the brightness temperature (TB) emitted by the Earth's surface, which is not isotropic, since it depends on the incidence angle and polarization, the Soil Moisture (SM) or the Sea Surface (SSS), the surface roughness etc. among others. The scope of this doctoral thesis is the study of some potential improvements could eventually be implemented in future interferometric radiometers. To validate improvements a ground-based instrument concept demonstrator the Passive Advanced Unit Synthetic Aperture or (PAU-SA) has being designed and implemented. Both MIRAS and PAU-SA are Y-shaped array, but the receiver topology and the processing unit are different. This Ph.D. thesis has been developed in the frame of The European Investigator Awards (EURYI) 2004 project entitled "Passive Advanced Unit (PAU): Hybrid L-band Radiometer, GNSS Refectometer and IR-Radiometer for Passive Sensing of the Ocean", and supported by the European Science Foundation (ESF).
846

The Effects of Aerosol Drug Delivery on Airway Resistance through Heat-Moisutre Exchangers

Hart, Matthew Thomas 15 September 2009 (has links)
Introduction: The use of heat moisture exchangers (HMEs) is becoming more popular with many institutions delivering aerosolized medications between the HME and the endotracheal tube of patients being mechanically ventilated. When HMEs become saturated resistance can increase which can cause changes that can lead to patient-ventilator dysnchrony, development of intrinsic PEEP, and weaning difficulty. The purpose of this study was to determine the effects of aerosol drug delivery on resistance through heat-moisture exchangers. Method: An in-vitro model to simulate exhaled heat and humidity from a patient’s lungs was developed by connecting the test lung to a cascade humidifier that was placed between the endotracheal tube and the test lung. Temperature (37 ºC) and relative humidity (100%) were held constant through all test runs. Ventilator settings used for the study were as follows: Tidal volume 500 mL, frequency 15/min, PEF 60 L/min, PEEP 5 cmH2O, bias flow 2 L/min and I:E ratio 1:3.The pressurized metered-dose inhaler (pMDI; ProAir HFA) with a minispacer (Thayer Medical), hand-held nebulizer (HHN; Salter Labs) and placebo (No aerosol generator or medication) were compared. Albuterol sulfate (2.5 mg/3 ml) was administered through continuous HHN and six puffs of albuterol were given from a pMDI equaling one treatment. Neither medication nor aerosol device was used with the placebo group in order to determine the effect of HME on airway resistance during mechanical ventilation. Six aerosolized treatments were given to simulate a patient receiving albuterol every four hours over a twenty-four hour period. While five minutes was allowed between treatments, airway resistance was measured via the ventilator before and after the administration of the placebo, pMDI and HHN, which equaled five-minute intervals. Data Analysis: Descriptive statistics, dependent t-tests, one-way analysis of variance (ANOVA), repeated measures ANOVA and post-hoc multiple comparisons were utilized for the data analysis of this study, using SPSS version 16.0. A p-value<0.05 was considered significant. Results: There is a linear time effect with means of airway resistance increasing overtime not only with the placebo but also with the pMDI and nebulizer. At the end of all treatments, the means of resistance with the placebo, pMDI and nebulizer were 9.31 cmH2O/L/sec, 9.37 cmH2O/L/sec and 11.20 cmH2O/L/sec, respectively. While no significant difference was found between the placebo and the pMDI (p=0.452), the nebulizer significantly increased airway resistance when compared to placebo (p=0.004) and the pMDI (p=0.02). Conclusion: Airway resistance increases with use of the placebo, pMDI, and JN groups. Aerosol generators showed a greater increase in resistance when compared to placebo with the greater increase in resistance by HHN.
847

Vattenhaltmätning i konfektyr och sylt med Karl Fishermetoden

Andersson, Hanna January 2006 (has links)
Abstract (in English) The task for the diploma work was to develop methods for measuring of moisture content by the Karl Fischer method, in jam, jelly sweets, and fudge. The start premises was a for the company whole new equipment, which should be started up. Then programs should be developed for different kind of samples. In the task it was as well included to develop methods for dissolving the different kind of samples, since the Karl Fischer method demands completely dissolved sample material.
848

Sustainable Logistics and Supply Chain for Biomass Harvesting Using ERP Platform : Promoting Bioenergy and Sustainable Development in South East Asia

Lim, Marcus January 2011 (has links)
This paper challenges the fact and to change people’s opinion about the much controversial ‘green’energy that is Bioenergy. If done properly with the right tool and attitude to implement a change in businesspractices, bioenergy could potentially be one of the major substitutes for fossil fuels, or as a preferred alternativeenergy. ERP (Enterprise Resource Planning) system is introduced as the solution for a cleaner and more sustainableoperation in terms of logistics strategy and supply chain management by integrating all business functions togetherwith the help of ICT (Information and Communications Technology) for a more transparent and efficient exchangeof data and instruction. The methodology employed is through a quantitative pilot experiment that is conducted inThailand, representing the region of South East Asia because of the climatic resemblance. The conceptualframework is based purely on the relationship between the Moisture Content (MC) of the biomass and thetransportation needed, and subsequently the environmental benefits that come along with a higher energy valuebiomass and a cut down of GHG emissions. The findings and analysis show a trend in superior operationalefficiency that leads to higher profitability performance due to cost savings and a minimization of environmentalimpact with a lower MC, before and after ERP is adopted to the business process. It is therefore decided thatcompanies gain competitive advantage with the employment of ERP platform, with a better management of theenterprise’s resources.
849

The impacts of outdoor air conditions and non-uniform exchanger channels on a run around membrane energy exchanger

Hemingson, Howard B 25 February 2011 (has links)
This thesis contains the numerically investigations of the performance of a run-around membrane energy exchanger (RAMEE) at different outdoor air conditions and the effects of non-uniform exchanger channels. The RAMEE is a new type of building ventilation air energy recovery system that allows heat and moisture to be transferred between isolated supply and exhaust air streams. Two liquid-to-air membrane energy exchangers (LAMEEs) are placed in the supply and exhaust air ducts and transfer heat and moisture between air and a circulating liquid desiccant that couples the two LAMEEs together. The ability of the system to transfer heat and moisture between isolated supply and exhaust ducts makes it appropriate for numerous HVAC applications (e.g., hospitals and building energy retrofits). <p> The performance of the RAMEE at different outdoor air conditions is shown to be highly variable due to the coupling of the heat and moisture transfer by the desiccant. This coupling allows the humidity ratio between the indoor and outdoor air to influence the heat transfer and the moisture transfer is influenced by the difference between the indoor and outdoor air temperatures. The coupling produces some complex RAMEE performance characteristics at some outdoor air conditions where the effectiveness values (i.e., sensible, latent, and total) were shown to be less than 0% or greater than 100%. Effectiveness and operating correlations are developed to describe these complex behaviours because existing correlations do not account for the coupling effects. The correlations can serve as design and operation tools for the RAMEE which do not require the use of an iterative computational numerical model.<p> Non-uniform exchanger channels are present in the RAMEE because of pressure differences between the air and solution channels which deform the membrane into the air channel. The non-uniform channels are analytically shown to create maldistributed fluid flows and variable heat and mass transfer coefficients. The combined effects of these two changes lead to a reduction in the RAMEE effectiveness, which increases as the size of the membrane deformation increases. The reduction in total effectiveness for an exchanger where the membrane has a peak deflection of 10% of the nominal air channel thickness operating at a NTU of 12 was shown to be 12.5%. These results of non-uniform exchanger channels agree with previously conducted experimental results.
850

A Four Physics Approach to Modeling Moisture Diffusion, Structural Mechanics, and Heat Conduction Coupled with Physical Aging for a Glassy Thermoplastic

Haghighi Yazdi, Mojtaba January 2011 (has links)
The performance of some polymeric materials is profoundly affected by long-term exposure to moisture during service. This poses problems for high precision and/or load bearing components in engineering applications where moisture-induced changes in mechanical properties and dimensional stability could compromise the reliability of the device or structure. In addition to external factors such as moisture, the material properties are also evolving due to inherent structural relaxation within the polymeric material through a process known as physical aging. Based on the current knowledge of both mechanisms, they have opposite effects on material properties. The common approach to studying the effects of moisture is to expose the polymeric material to combined moisture and heat, also referred to as hygrothermal conditions. The application of heat not only increases the rate of moisture diffusion but also accelerates physical aging processes which would otherwise be very slow. In spite of this coupled response, nearly all hygrothermal studies ignore physical aging in their investigations due to the complexity of the coupled problem. The goal of this work is to develop a numerical model for simulating the interactive effects of moisture diffusion and physical aging in a glassy polymer. The intent is to develop a capability that would also allow one to model these effects under various mechanical loading and heat transfer conditions. The study has chosen to model the response of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS), which is a glassy polymer blend that has very similar behaviour to polycarbonate. In this study, a comprehensive approach which considers four physical mechanisms – structural mechanics, moisture diffusion, heat conduction, and physical aging – has been applied. The most current analytical models in the literature usually attempt to model two or three coupled physical phenomena. To develop the four coupled phenomena model, the current work has undertaken an extensive scope of work involving experimental characterization and finite element modeling. In the experimental part of this work, seven sets of different tests were conducted to characterize the behaviour of PC/ABS exposed to moisture diffusion and accelerated physical aging. These experiments provided a comparative study between the effects of physical aging and moisture diffusion on the material’s behaviour; and at the same time, provided data for the numerical modeling. The dual glass transition temperatures (Tg) of the material were determined using two techniques: dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). The DMA tests provided data for studying the effects of hygrothermal aging on the Tg’s of the material and were also useful for mechanical tests such as creep and stress relaxation performed using the DMA. The Tg’s obtained using the TMA were also required for physical aging experiments using the dilatometry mode of TMA. Structural relaxation of the blend was studied by aging the material at 80 °C for 7 aging times in the TMA. These experiments gave an insight into the volume relaxation behaviour of the blend at a constant temperature. Specific heat capacity of the PC/ABS blend was also measured using another thermal analysis technique; i.e., differential scanning calorimeter (DSC), before and after test specimens were exposed to hygrothermal aging for 168 hours. The interactive effects of physical aging and moisture diffusion on the moisture uptake of the material were studied using gravimetric experiments performed at 5 different hygrothermal conditions. The experimental results were used to determine the coefficient of diffusion as well as the equilibrium moisture uptake of the samples. Furthermore, the effects of both moisture diffusion and physical aging on the mechanical behaviour of the polymer blend were investigated using stress relaxation tests. The comparison of the results of the tests performed on un-aged specimens with those of thermally and hygrothermally aged samples showed how physical aging effects competed with moisture diffusion. Also, the coefficient of hygroscopic expansion of the PC/ABS blend was determined using a so-called TMA/TGA technique. The numerical modeling of the four-coupled physics was achieved using the governing equations in the form of partial differential equations. Modeling was performed using the commercial finite element software package, COMSOL Multiphysics®. First, the uncoupled physical mechanisms of structural mechanics, moisture diffusion, and heat conduction were modeled separately to investigate the validity of the PDEs for each individual phenomenon. The modeling of the coupled physics was undertaken in two parts. The three coupled physics of structural mechanics, moisture diffusion, and heat conduction was first simulated for a gas pipe having a linear elastic behaviour. The comparison of the results with similar analysis available in the literature showed the capability of the developed model for the analysis of the triple coupled mechanisms. The second part modeled the four coupled phenomena by incorporating the experimentally determined coupling coefficients. In the developed numerical model, the material behaviour was considered to be linear viscoelastic, which complicated the model further but provided more realistic results for the behaviour of the polymer blend. Moreover, an approximation method was proposed for estimating the coupling coefficients that exist between different coupled physics in this study. It was also suggested that the anomalous moisture diffusion in the material can be modeled using a time varying boundary condition. Finally, the model was successfully verified and demonstrated using test case studies with thin thermoplastic plates. The proposed four-coupled physics model was able to predict with good accuracy the deflection of thin thermoplastic plates under bending for a set of hygorthermal test condition.

Page generated in 0.0177 seconds